1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
use crate::{intrinsics, iter::from_fn, ops::Try};

/// An iterator for stepping iterators by a custom amount.
///
/// This `struct` is created by the [`step_by`] method on [`Iterator`]. See
/// its documentation for more.
///
/// [`step_by`]: Iterator::step_by
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[stable(feature = "iterator_step_by", since = "1.28.0")]
#[derive(Clone, Debug)]
pub struct StepBy<I> {
    iter: I,
    step: usize,
    first_take: bool,
}

impl<I> StepBy<I> {
    pub(in crate::iter) fn new(iter: I, step: usize) -> StepBy<I> {
        assert!(step != 0);
        StepBy { iter, step: step - 1, first_take: true }
    }
}

#[stable(feature = "iterator_step_by", since = "1.28.0")]
impl<I> Iterator for StepBy<I>
where
    I: Iterator,
{
    type Item = I::Item;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.first_take {
            self.first_take = false;
            self.iter.next()
        } else {
            self.iter.nth(self.step)
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        #[inline]
        fn first_size(step: usize) -> impl Fn(usize) -> usize {
            move |n| if n == 0 { 0 } else { 1 + (n - 1) / (step + 1) }
        }

        #[inline]
        fn other_size(step: usize) -> impl Fn(usize) -> usize {
            move |n| n / (step + 1)
        }

        let (low, high) = self.iter.size_hint();

        if self.first_take {
            let f = first_size(self.step);
            (f(low), high.map(f))
        } else {
            let f = other_size(self.step);
            (f(low), high.map(f))
        }
    }

    #[inline]
    fn nth(&mut self, mut n: usize) -> Option<Self::Item> {
        if self.first_take {
            self.first_take = false;
            let first = self.iter.next();
            if n == 0 {
                return first;
            }
            n -= 1;
        }
        // n and self.step are indices, we need to add 1 to get the amount of elements
        // When calling `.nth`, we need to subtract 1 again to convert back to an index
        // step + 1 can't overflow because `.step_by` sets `self.step` to `step - 1`
        let mut step = self.step + 1;
        // n + 1 could overflow
        // thus, if n is usize::MAX, instead of adding one, we call .nth(step)
        if n == usize::MAX {
            self.iter.nth(step - 1);
        } else {
            n += 1;
        }

        // overflow handling
        loop {
            let mul = n.checked_mul(step);
            {
                if intrinsics::likely(mul.is_some()) {
                    return self.iter.nth(mul.unwrap() - 1);
                }
            }
            let div_n = usize::MAX / n;
            let div_step = usize::MAX / step;
            let nth_n = div_n * n;
            let nth_step = div_step * step;
            let nth = if nth_n > nth_step {
                step -= div_n;
                nth_n
            } else {
                n -= div_step;
                nth_step
            };
            self.iter.nth(nth - 1);
        }
    }

    fn try_fold<Acc, F, R>(&mut self, mut acc: Acc, mut f: F) -> R
    where
        F: FnMut(Acc, Self::Item) -> R,
        R: Try<Output = Acc>,
    {
        #[inline]
        fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item> + '_ {
            move || iter.nth(step)
        }

        if self.first_take {
            self.first_take = false;
            match self.iter.next() {
                None => return try { acc },
                Some(x) => acc = f(acc, x)?,
            }
        }
        from_fn(nth(&mut self.iter, self.step)).try_fold(acc, f)
    }

    fn fold<Acc, F>(mut self, mut acc: Acc, mut f: F) -> Acc
    where
        F: FnMut(Acc, Self::Item) -> Acc,
    {
        #[inline]
        fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item> + '_ {
            move || iter.nth(step)
        }

        if self.first_take {
            self.first_take = false;
            match self.iter.next() {
                None => return acc,
                Some(x) => acc = f(acc, x),
            }
        }
        from_fn(nth(&mut self.iter, self.step)).fold(acc, f)
    }
}

impl<I> StepBy<I>
where
    I: ExactSizeIterator,
{
    // The zero-based index starting from the end of the iterator of the
    // last element. Used in the `DoubleEndedIterator` implementation.
    fn next_back_index(&self) -> usize {
        let rem = self.iter.len() % (self.step + 1);
        if self.first_take {
            if rem == 0 { self.step } else { rem - 1 }
        } else {
            rem
        }
    }
}

#[stable(feature = "double_ended_step_by_iterator", since = "1.38.0")]
impl<I> DoubleEndedIterator for StepBy<I>
where
    I: DoubleEndedIterator + ExactSizeIterator,
{
    #[inline]
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.nth_back(self.next_back_index())
    }

    #[inline]
    fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
        // `self.iter.nth_back(usize::MAX)` does the right thing here when `n`
        // is out of bounds because the length of `self.iter` does not exceed
        // `usize::MAX` (because `I: ExactSizeIterator`) and `nth_back` is
        // zero-indexed
        let n = n.saturating_mul(self.step + 1).saturating_add(self.next_back_index());
        self.iter.nth_back(n)
    }

    fn try_rfold<Acc, F, R>(&mut self, init: Acc, mut f: F) -> R
    where
        F: FnMut(Acc, Self::Item) -> R,
        R: Try<Output = Acc>,
    {
        #[inline]
        fn nth_back<I: DoubleEndedIterator>(
            iter: &mut I,
            step: usize,
        ) -> impl FnMut() -> Option<I::Item> + '_ {
            move || iter.nth_back(step)
        }

        match self.next_back() {
            None => try { init },
            Some(x) => {
                let acc = f(init, x)?;
                from_fn(nth_back(&mut self.iter, self.step)).try_fold(acc, f)
            }
        }
    }

    #[inline]
    fn rfold<Acc, F>(mut self, init: Acc, mut f: F) -> Acc
    where
        Self: Sized,
        F: FnMut(Acc, Self::Item) -> Acc,
    {
        #[inline]
        fn nth_back<I: DoubleEndedIterator>(
            iter: &mut I,
            step: usize,
        ) -> impl FnMut() -> Option<I::Item> + '_ {
            move || iter.nth_back(step)
        }

        match self.next_back() {
            None => init,
            Some(x) => {
                let acc = f(init, x);
                from_fn(nth_back(&mut self.iter, self.step)).fold(acc, f)
            }
        }
    }
}

// StepBy can only make the iterator shorter, so the len will still fit.
#[stable(feature = "iterator_step_by", since = "1.28.0")]
impl<I> ExactSizeIterator for StepBy<I> where I: ExactSizeIterator {}