1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
//! Simplification of where-clauses and parameter bounds into a prettier and
//! more canonical form.
//!
//! Currently all cross-crate-inlined function use `rustc_middle::ty` to reconstruct
//! the AST (e.g., see all of `clean::inline`), but this is not always a
//! non-lossy transformation. The current format of storage for where-clauses
//! for functions and such is simply a list of predicates. One example of this
//! is that the AST predicate of: `where T: Trait<Foo = Bar>` is encoded as:
//! `where T: Trait, <T as Trait>::Foo = Bar`.
//!
//! This module attempts to reconstruct the original where and/or parameter
//! bounds by special casing scenarios such as these. Fun!

use rustc_data_structures::fx::FxIndexMap;
use rustc_hir::def_id::DefId;
use rustc_middle::ty;
use rustc_span::Symbol;

use crate::clean;
use crate::clean::GenericArgs as PP;
use crate::clean::WherePredicate as WP;
use crate::core::DocContext;

pub(crate) fn where_clauses(cx: &DocContext<'_>, clauses: Vec<WP>) -> Vec<WP> {
    // First, partition the where clause into its separate components.
    //
    // We use `FxIndexMap` so that the insertion order is preserved to prevent messing up to
    // the order of the generated bounds.
    let mut params: FxIndexMap<Symbol, (Vec<_>, Vec<_>)> = FxIndexMap::default();
    let mut lifetimes = Vec::new();
    let mut equalities = Vec::new();
    let mut tybounds = Vec::new();

    for clause in clauses {
        match clause {
            WP::BoundPredicate { ty, bounds, bound_params } => match ty {
                clean::Generic(s) => {
                    let (b, p) = params.entry(s).or_default();
                    b.extend(bounds);
                    p.extend(bound_params);
                }
                t => tybounds.push((t, (bounds, bound_params))),
            },
            WP::RegionPredicate { lifetime, bounds } => {
                lifetimes.push((lifetime, bounds));
            }
            WP::EqPredicate { lhs, rhs } => equalities.push((lhs, rhs)),
        }
    }

    // Look for equality predicates on associated types that can be merged into
    // general bound predicates
    equalities.retain(|&(ref lhs, ref rhs)| {
        let Some((self_, trait_did, name)) = lhs.projection() else {
            return true;
        };
        let clean::Generic(generic) = self_ else { return true };
        let Some((bounds, _)) = params.get_mut(generic) else { return true };

        merge_bounds(cx, bounds, trait_did, name, rhs)
    });

    // And finally, let's reassemble everything
    let mut clauses = Vec::new();
    clauses.extend(
        lifetimes.into_iter().map(|(lt, bounds)| WP::RegionPredicate { lifetime: lt, bounds }),
    );
    clauses.extend(params.into_iter().map(|(k, (bounds, params))| WP::BoundPredicate {
        ty: clean::Generic(k),
        bounds,
        bound_params: params,
    }));
    clauses.extend(tybounds.into_iter().map(|(ty, (bounds, bound_params))| WP::BoundPredicate {
        ty,
        bounds,
        bound_params,
    }));
    clauses.extend(equalities.into_iter().map(|(lhs, rhs)| WP::EqPredicate { lhs, rhs }));
    clauses
}

pub(crate) fn merge_bounds(
    cx: &clean::DocContext<'_>,
    bounds: &mut Vec<clean::GenericBound>,
    trait_did: DefId,
    assoc: clean::PathSegment,
    rhs: &clean::Term,
) -> bool {
    !bounds.iter_mut().any(|b| {
        let trait_ref = match *b {
            clean::GenericBound::TraitBound(ref mut tr, _) => tr,
            clean::GenericBound::Outlives(..) => return false,
        };
        // If this QPath's trait `trait_did` is the same as, or a supertrait
        // of, the bound's trait `did` then we can keep going, otherwise
        // this is just a plain old equality bound.
        if !trait_is_same_or_supertrait(cx, trait_ref.trait_.def_id(), trait_did) {
            return false;
        }
        let last = trait_ref.trait_.segments.last_mut().expect("segments were empty");
        match last.args {
            PP::AngleBracketed { ref mut bindings, .. } => {
                bindings.push(clean::TypeBinding {
                    assoc: assoc.clone(),
                    kind: clean::TypeBindingKind::Equality { term: rhs.clone() },
                });
            }
            PP::Parenthesized { ref mut output, .. } => match output {
                Some(o) => assert_eq!(&clean::Term::Type(o.as_ref().clone()), rhs),
                None => {
                    if *rhs != clean::Term::Type(clean::Type::Tuple(Vec::new())) {
                        *output = Some(Box::new(rhs.ty().unwrap().clone()));
                    }
                }
            },
        };
        true
    })
}

fn trait_is_same_or_supertrait(cx: &DocContext<'_>, child: DefId, trait_: DefId) -> bool {
    if child == trait_ {
        return true;
    }
    let predicates = cx.tcx.super_predicates_of(child);
    debug_assert!(cx.tcx.generics_of(child).has_self);
    let self_ty = cx.tcx.types.self_param;
    predicates
        .predicates
        .iter()
        .filter_map(|(pred, _)| {
            if let ty::PredicateKind::Trait(pred) = pred.kind().skip_binder() {
                if pred.trait_ref.self_ty() == self_ty { Some(pred.def_id()) } else { None }
            } else {
                None
            }
        })
        .any(|did| trait_is_same_or_supertrait(cx, did, trait_))
}