1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_middle::ty::subst::{GenericArg, GenericArgKind, Subst};
use rustc_middle::ty::{self, DefIdTree, Ty, TyCtxt};
use rustc_span::Span;
use super::explicit::ExplicitPredicatesMap;
use super::utils::*;
/// Infer predicates for the items in the crate.
///
/// `global_inferred_outlives`: this is initially the empty map that
/// was generated by walking the items in the crate. This will
/// now be filled with inferred predicates.
pub(super) fn infer_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
) -> FxHashMap<DefId, ty::EarlyBinder<RequiredPredicates<'tcx>>> {
debug!("infer_predicates");
let mut explicit_map = ExplicitPredicatesMap::new();
let mut global_inferred_outlives = FxHashMap::default();
// If new predicates were added then we need to re-calculate
// all crates since there could be new implied predicates.
'outer: loop {
let mut predicates_added = false;
// Visit all the crates and infer predicates
for id in tcx.hir().items() {
let item_did = id.def_id;
debug!("InferVisitor::visit_item(item={:?})", item_did);
let mut item_required_predicates = RequiredPredicates::default();
match tcx.def_kind(item_did) {
DefKind::Union | DefKind::Enum | DefKind::Struct => {
let adt_def = tcx.adt_def(item_did.to_def_id());
// Iterate over all fields in item_did
for field_def in adt_def.all_fields() {
// Calculating the predicate requirements necessary
// for item_did.
//
// For field of type &'a T (reference) or Adt
// (struct/enum/union) there will be outlive
// requirements for adt_def.
let field_ty = tcx.type_of(field_def.did);
let field_span = tcx.def_span(field_def.did);
insert_required_predicates_to_be_wf(
tcx,
field_ty,
field_span,
&global_inferred_outlives,
&mut item_required_predicates,
&mut explicit_map,
);
}
}
_ => {}
};
// If new predicates were added (`local_predicate_map` has more
// predicates than the `global_inferred_outlives`), the new predicates
// might result in implied predicates for their parent types.
// Therefore mark `predicates_added` as true and which will ensure
// we walk the crates again and re-calculate predicates for all
// items.
let item_predicates_len: usize =
global_inferred_outlives.get(&item_did.to_def_id()).map_or(0, |p| p.0.len());
if item_required_predicates.len() > item_predicates_len {
predicates_added = true;
global_inferred_outlives
.insert(item_did.to_def_id(), ty::EarlyBinder(item_required_predicates));
}
}
if !predicates_added {
break 'outer;
}
}
global_inferred_outlives
}
fn insert_required_predicates_to_be_wf<'tcx>(
tcx: TyCtxt<'tcx>,
field_ty: Ty<'tcx>,
field_span: Span,
global_inferred_outlives: &FxHashMap<DefId, ty::EarlyBinder<RequiredPredicates<'tcx>>>,
required_predicates: &mut RequiredPredicates<'tcx>,
explicit_map: &mut ExplicitPredicatesMap<'tcx>,
) {
for arg in field_ty.walk() {
let ty = match arg.unpack() {
GenericArgKind::Type(ty) => ty,
// No predicates from lifetimes or constants, except potentially
// constants' types, but `walk` will get to them as well.
GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => continue,
};
match *ty.kind() {
// The field is of type &'a T which means that we will have
// a predicate requirement of T: 'a (T outlives 'a).
//
// We also want to calculate potential predicates for the T
ty::Ref(region, rty, _) => {
debug!("Ref");
insert_outlives_predicate(tcx, rty.into(), region, field_span, required_predicates);
}
// For each Adt (struct/enum/union) type `Foo<'a, T>`, we
// can load the current set of inferred and explicit
// predicates from `global_inferred_outlives` and filter the
// ones that are TypeOutlives.
ty::Adt(def, substs) => {
// First check the inferred predicates
//
// Example 1:
//
// struct Foo<'a, T> {
// field1: Bar<'a, T>
// }
//
// struct Bar<'b, U> {
// field2: &'b U
// }
//
// Here, when processing the type of `field1`, we would
// request the set of implicit predicates computed for `Bar`
// thus far. This will initially come back empty, but in next
// round we will get `U: 'b`. We then apply the substitution
// `['b => 'a, U => T]` and thus get the requirement that `T:
// 'a` holds for `Foo`.
debug!("Adt");
if let Some(unsubstituted_predicates) = global_inferred_outlives.get(&def.did()) {
for (unsubstituted_predicate, &span) in &unsubstituted_predicates.0 {
// `unsubstituted_predicate` is `U: 'b` in the
// example above. So apply the substitution to
// get `T: 'a` (or `predicate`):
let predicate = unsubstituted_predicates
.rebind(*unsubstituted_predicate)
.subst(tcx, substs);
insert_outlives_predicate(
tcx,
predicate.0,
predicate.1,
span,
required_predicates,
);
}
}
// Check if the type has any explicit predicates that need
// to be added to `required_predicates`
// let _: () = substs.region_at(0);
check_explicit_predicates(
tcx,
def.did(),
substs,
required_predicates,
explicit_map,
None,
);
}
ty::Dynamic(obj, ..) => {
// This corresponds to `dyn Trait<..>`. In this case, we should
// use the explicit predicates as well.
debug!("Dynamic");
debug!("field_ty = {}", &field_ty);
debug!("ty in field = {}", &ty);
if let Some(ex_trait_ref) = obj.principal() {
// Here, we are passing the type `usize` as a
// placeholder value with the function
// `with_self_ty`, since there is no concrete type
// `Self` for a `dyn Trait` at this
// stage. Therefore when checking explicit
// predicates in `check_explicit_predicates` we
// need to ignore checking the explicit_map for
// Self type.
let substs =
ex_trait_ref.with_self_ty(tcx, tcx.types.usize).skip_binder().substs;
check_explicit_predicates(
tcx,
ex_trait_ref.skip_binder().def_id,
substs,
required_predicates,
explicit_map,
Some(tcx.types.self_param),
);
}
}
ty::Projection(obj) => {
// This corresponds to `<T as Foo<'a>>::Bar`. In this case, we should use the
// explicit predicates as well.
debug!("Projection");
check_explicit_predicates(
tcx,
tcx.parent(obj.item_def_id),
obj.substs,
required_predicates,
explicit_map,
None,
);
}
_ => {}
}
}
}
/// We also have to check the explicit predicates
/// declared on the type.
/// ```ignore (illustrative)
/// struct Foo<'a, T> {
/// field1: Bar<T>
/// }
///
/// struct Bar<U> where U: 'static, U: Foo {
/// ...
/// }
/// ```
/// Here, we should fetch the explicit predicates, which
/// will give us `U: 'static` and `U: Foo`. The latter we
/// can ignore, but we will want to process `U: 'static`,
/// applying the substitution as above.
fn check_explicit_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: DefId,
substs: &[GenericArg<'tcx>],
required_predicates: &mut RequiredPredicates<'tcx>,
explicit_map: &mut ExplicitPredicatesMap<'tcx>,
ignored_self_ty: Option<Ty<'tcx>>,
) {
debug!(
"check_explicit_predicates(def_id={:?}, \
substs={:?}, \
explicit_map={:?}, \
required_predicates={:?}, \
ignored_self_ty={:?})",
def_id, substs, explicit_map, required_predicates, ignored_self_ty,
);
let explicit_predicates = explicit_map.explicit_predicates_of(tcx, def_id);
for (outlives_predicate, &span) in &explicit_predicates.0 {
debug!("outlives_predicate = {:?}", &outlives_predicate);
// Careful: If we are inferring the effects of a `dyn Trait<..>`
// type, then when we look up the predicates for `Trait`,
// we may find some that reference `Self`. e.g., perhaps the
// definition of `Trait` was:
//
// ```
// trait Trait<'a, T> where Self: 'a { .. }
// ```
//
// we want to ignore such predicates here, because
// there is no type parameter for them to affect. Consider
// a struct containing `dyn Trait`:
//
// ```
// struct MyStruct<'x, X> { field: Box<dyn Trait<'x, X>> }
// ```
//
// The `where Self: 'a` predicate refers to the *existential, hidden type*
// that is represented by the `dyn Trait`, not to the `X` type parameter
// (or any other generic parameter) declared on `MyStruct`.
//
// Note that we do this check for self **before** applying `substs`. In the
// case that `substs` come from a `dyn Trait` type, our caller will have
// included `Self = usize` as the value for `Self`. If we were
// to apply the substs, and not filter this predicate, we might then falsely
// conclude that e.g., `X: 'x` was a reasonable inferred requirement.
//
// Another similar case is where we have an inferred
// requirement like `<Self as Trait>::Foo: 'b`. We presently
// ignore such requirements as well (cc #54467)-- though
// conceivably it might be better if we could extract the `Foo
// = X` binding from the object type (there must be such a
// binding) and thus infer an outlives requirement that `X:
// 'b`.
if let Some(self_ty) = ignored_self_ty
&& let GenericArgKind::Type(ty) = outlives_predicate.0.unpack()
&& ty.walk().any(|arg| arg == self_ty.into())
{
debug!("skipping self ty = {:?}", &ty);
continue;
}
let predicate = explicit_predicates.rebind(*outlives_predicate).subst(tcx, substs);
debug!("predicate = {:?}", &predicate);
insert_outlives_predicate(tcx, predicate.0, predicate.1, span, required_predicates);
}
}