1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
// Type resolution: the phase that finds all the types in the AST with
// unresolved type variables and replaces "ty_var" types with their
// substitutions.

use crate::check::FnCtxt;
use hir::def_id::LocalDefId;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::ErrorGuaranteed;
use rustc_hir as hir;
use rustc_hir::intravisit::{self, Visitor};
use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282;
use rustc_infer::infer::InferCtxt;
use rustc_middle::hir::place::Place as HirPlace;
use rustc_middle::mir::FakeReadCause;
use rustc_middle::ty::adjustment::{Adjust, Adjustment, PointerCast};
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable};
use rustc_middle::ty::TypeckResults;
use rustc_middle::ty::{self, ClosureSizeProfileData, Ty, TyCtxt};
use rustc_span::symbol::sym;
use rustc_span::Span;

use std::mem;
use std::ops::ControlFlow;

///////////////////////////////////////////////////////////////////////////
// Entry point

// During type inference, partially inferred types are
// represented using Type variables (ty::Infer). These don't appear in
// the final TypeckResults since all of the types should have been
// inferred once typeck is done.
// When type inference is running however, having to update the typeck
// typeck results every time a new type is inferred would be unreasonably slow,
// so instead all of the replacement happens at the end in
// resolve_type_vars_in_body, which creates a new TypeTables which
// doesn't contain any inference types.
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    pub fn resolve_type_vars_in_body(
        &self,
        body: &'tcx hir::Body<'tcx>,
    ) -> &'tcx ty::TypeckResults<'tcx> {
        let item_id = self.tcx.hir().body_owner(body.id());
        let item_def_id = self.tcx.hir().local_def_id(item_id);

        // This attribute causes us to dump some writeback information
        // in the form of errors, which is used for unit tests.
        let rustc_dump_user_substs =
            self.tcx.has_attr(item_def_id.to_def_id(), sym::rustc_dump_user_substs);

        let mut wbcx = WritebackCx::new(self, body, rustc_dump_user_substs);
        for param in body.params {
            wbcx.visit_node_id(param.pat.span, param.hir_id);
        }
        // Type only exists for constants and statics, not functions.
        match self.tcx.hir().body_owner_kind(item_def_id) {
            hir::BodyOwnerKind::Const | hir::BodyOwnerKind::Static(_) => {
                wbcx.visit_node_id(body.value.span, item_id);
            }
            hir::BodyOwnerKind::Closure | hir::BodyOwnerKind::Fn => (),
        }
        wbcx.visit_body(body);
        wbcx.visit_min_capture_map();
        wbcx.eval_closure_size();
        wbcx.visit_fake_reads_map();
        wbcx.visit_closures();
        wbcx.visit_liberated_fn_sigs();
        wbcx.visit_fru_field_types();
        wbcx.visit_opaque_types();
        wbcx.visit_coercion_casts();
        wbcx.visit_user_provided_tys();
        wbcx.visit_user_provided_sigs();
        wbcx.visit_generator_interior_types();

        wbcx.typeck_results.rvalue_scopes =
            mem::take(&mut self.typeck_results.borrow_mut().rvalue_scopes);

        let used_trait_imports =
            mem::take(&mut self.typeck_results.borrow_mut().used_trait_imports);
        debug!("used_trait_imports({:?}) = {:?}", item_def_id, used_trait_imports);
        wbcx.typeck_results.used_trait_imports = used_trait_imports;

        wbcx.typeck_results.treat_byte_string_as_slice =
            mem::take(&mut self.typeck_results.borrow_mut().treat_byte_string_as_slice);

        if self.is_tainted_by_errors() {
            // FIXME(eddyb) keep track of `ErrorGuaranteed` from where the error was emitted.
            wbcx.typeck_results.tainted_by_errors =
                Some(ErrorGuaranteed::unchecked_claim_error_was_emitted());
        }

        debug!("writeback: typeck results for {:?} are {:#?}", item_def_id, wbcx.typeck_results);

        self.tcx.arena.alloc(wbcx.typeck_results)
    }
}

///////////////////////////////////////////////////////////////////////////
// The Writeback context. This visitor walks the HIR, checking the
// fn-specific typeck results to find references to types or regions. It
// resolves those regions to remove inference variables and writes the
// final result back into the master typeck results in the tcx. Here and
// there, it applies a few ad-hoc checks that were not convenient to
// do elsewhere.

struct WritebackCx<'cx, 'tcx> {
    fcx: &'cx FnCtxt<'cx, 'tcx>,

    typeck_results: ty::TypeckResults<'tcx>,

    body: &'tcx hir::Body<'tcx>,

    rustc_dump_user_substs: bool,
}

impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
    fn new(
        fcx: &'cx FnCtxt<'cx, 'tcx>,
        body: &'tcx hir::Body<'tcx>,
        rustc_dump_user_substs: bool,
    ) -> WritebackCx<'cx, 'tcx> {
        let owner = body.id().hir_id.owner;

        WritebackCx {
            fcx,
            typeck_results: ty::TypeckResults::new(owner),
            body,
            rustc_dump_user_substs,
        }
    }

    fn tcx(&self) -> TyCtxt<'tcx> {
        self.fcx.tcx
    }

    fn write_ty_to_typeck_results(&mut self, hir_id: hir::HirId, ty: Ty<'tcx>) {
        debug!("write_ty_to_typeck_results({:?}, {:?})", hir_id, ty);
        assert!(!ty.needs_infer() && !ty.has_placeholders() && !ty.has_free_regions());
        self.typeck_results.node_types_mut().insert(hir_id, ty);
    }

    // Hacky hack: During type-checking, we treat *all* operators
    // as potentially overloaded. But then, during writeback, if
    // we observe that something like `a+b` is (known to be)
    // operating on scalars, we clear the overload.
    fn fix_scalar_builtin_expr(&mut self, e: &hir::Expr<'_>) {
        match e.kind {
            hir::ExprKind::Unary(hir::UnOp::Neg | hir::UnOp::Not, inner) => {
                let inner_ty = self.fcx.node_ty(inner.hir_id);
                let inner_ty = self.fcx.resolve_vars_if_possible(inner_ty);

                if inner_ty.is_scalar() {
                    let mut typeck_results = self.fcx.typeck_results.borrow_mut();
                    typeck_results.type_dependent_defs_mut().remove(e.hir_id);
                    typeck_results.node_substs_mut().remove(e.hir_id);
                }
            }
            hir::ExprKind::Binary(ref op, lhs, rhs) | hir::ExprKind::AssignOp(ref op, lhs, rhs) => {
                let lhs_ty = self.fcx.node_ty(lhs.hir_id);
                let lhs_ty = self.fcx.resolve_vars_if_possible(lhs_ty);

                let rhs_ty = self.fcx.node_ty(rhs.hir_id);
                let rhs_ty = self.fcx.resolve_vars_if_possible(rhs_ty);

                if lhs_ty.is_scalar() && rhs_ty.is_scalar() {
                    let mut typeck_results = self.fcx.typeck_results.borrow_mut();
                    typeck_results.type_dependent_defs_mut().remove(e.hir_id);
                    typeck_results.node_substs_mut().remove(e.hir_id);

                    match e.kind {
                        hir::ExprKind::Binary(..) => {
                            if !op.node.is_by_value() {
                                let mut adjustments = typeck_results.adjustments_mut();
                                if let Some(a) = adjustments.get_mut(lhs.hir_id) {
                                    a.pop();
                                }
                                if let Some(a) = adjustments.get_mut(rhs.hir_id) {
                                    a.pop();
                                }
                            }
                        }
                        hir::ExprKind::AssignOp(..)
                            if let Some(a) = typeck_results.adjustments_mut().get_mut(lhs.hir_id) =>
                        {
                            a.pop();
                        }
                        _ => {}
                    }
                }
            }
            _ => {}
        }
    }

    // (ouz-a 1005988): Normally `[T] : std::ops::Index<usize>` should be normalized
    // into [T] but currently `Where` clause stops the normalization process for it,
    // here we compare types of expr and base in a code without `Where` clause they would be equal
    // if they are not we don't modify the expr, hence we bypass the ICE
    fn is_builtin_index(
        &mut self,
        typeck_results: &TypeckResults<'tcx>,
        e: &hir::Expr<'_>,
        base_ty: Ty<'tcx>,
        index_ty: Ty<'tcx>,
    ) -> bool {
        if let Some(elem_ty) = base_ty.builtin_index() {
            let Some(exp_ty) = typeck_results.expr_ty_opt(e) else {return false;};
            let resolved_exp_ty = self.resolve(exp_ty, &e.span);

            elem_ty == resolved_exp_ty && index_ty == self.fcx.tcx.types.usize
        } else {
            false
        }
    }

    // Similar to operators, indexing is always assumed to be overloaded
    // Here, correct cases where an indexing expression can be simplified
    // to use builtin indexing because the index type is known to be
    // usize-ish
    fn fix_index_builtin_expr(&mut self, e: &hir::Expr<'_>) {
        if let hir::ExprKind::Index(ref base, ref index) = e.kind {
            let mut typeck_results = self.fcx.typeck_results.borrow_mut();

            // All valid indexing looks like this; might encounter non-valid indexes at this point.
            let base_ty = typeck_results
                .expr_ty_adjusted_opt(base)
                .map(|t| self.fcx.resolve_vars_if_possible(t).kind());
            if base_ty.is_none() {
                // When encountering `return [0][0]` outside of a `fn` body we can encounter a base
                // that isn't in the type table. We assume more relevant errors have already been
                // emitted, so we delay an ICE if none have. (#64638)
                self.tcx().sess.delay_span_bug(e.span, &format!("bad base: `{:?}`", base));
            }
            if let Some(ty::Ref(_, base_ty, _)) = base_ty {
                let index_ty = typeck_results.expr_ty_adjusted_opt(index).unwrap_or_else(|| {
                    // When encountering `return [0][0]` outside of a `fn` body we would attempt
                    // to access an nonexistent index. We assume that more relevant errors will
                    // already have been emitted, so we only gate on this with an ICE if no
                    // error has been emitted. (#64638)
                    self.fcx.tcx.ty_error_with_message(
                        e.span,
                        &format!("bad index {:?} for base: `{:?}`", index, base),
                    )
                });
                let index_ty = self.fcx.resolve_vars_if_possible(index_ty);
                let resolved_base_ty = self.resolve(*base_ty, &base.span);

                if self.is_builtin_index(&typeck_results, e, resolved_base_ty, index_ty) {
                    // Remove the method call record
                    typeck_results.type_dependent_defs_mut().remove(e.hir_id);
                    typeck_results.node_substs_mut().remove(e.hir_id);

                    if let Some(a) = typeck_results.adjustments_mut().get_mut(base.hir_id) {
                        // Discard the need for a mutable borrow

                        // Extra adjustment made when indexing causes a drop
                        // of size information - we need to get rid of it
                        // Since this is "after" the other adjustment to be
                        // discarded, we do an extra `pop()`
                        if let Some(Adjustment {
                            kind: Adjust::Pointer(PointerCast::Unsize), ..
                        }) = a.pop()
                        {
                            // So the borrow discard actually happens here
                            a.pop();
                        }
                    }
                }
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// Impl of Visitor for Resolver
//
// This is the master code which walks the AST. It delegates most of
// the heavy lifting to the generic visit and resolve functions
// below. In general, a function is made into a `visitor` if it must
// traffic in node-ids or update typeck results in the type context etc.

impl<'cx, 'tcx> Visitor<'tcx> for WritebackCx<'cx, 'tcx> {
    fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) {
        self.fix_scalar_builtin_expr(e);
        self.fix_index_builtin_expr(e);

        match e.kind {
            hir::ExprKind::Closure(&hir::Closure { body, .. }) => {
                let body = self.fcx.tcx.hir().body(body);
                for param in body.params {
                    self.visit_node_id(e.span, param.hir_id);
                }

                self.visit_body(body);
            }
            hir::ExprKind::Struct(_, fields, _) => {
                for field in fields {
                    self.visit_field_id(field.hir_id);
                }
            }
            hir::ExprKind::Field(..) => {
                self.visit_field_id(e.hir_id);
            }
            hir::ExprKind::ConstBlock(anon_const) => {
                self.visit_node_id(e.span, anon_const.hir_id);

                let body = self.tcx().hir().body(anon_const.body);
                self.visit_body(body);
            }
            _ => {}
        }

        self.visit_node_id(e.span, e.hir_id);
        intravisit::walk_expr(self, e);
    }

    fn visit_generic_param(&mut self, p: &'tcx hir::GenericParam<'tcx>) {
        match &p.kind {
            hir::GenericParamKind::Lifetime { .. } => {
                // Nothing to write back here
            }
            hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => {
                self.tcx().sess.delay_span_bug(p.span, format!("unexpected generic param: {p:?}"));
            }
        }
    }

    fn visit_block(&mut self, b: &'tcx hir::Block<'tcx>) {
        self.visit_node_id(b.span, b.hir_id);
        intravisit::walk_block(self, b);
    }

    fn visit_pat(&mut self, p: &'tcx hir::Pat<'tcx>) {
        match p.kind {
            hir::PatKind::Binding(..) => {
                let typeck_results = self.fcx.typeck_results.borrow();
                if let Some(bm) =
                    typeck_results.extract_binding_mode(self.tcx().sess, p.hir_id, p.span)
                {
                    self.typeck_results.pat_binding_modes_mut().insert(p.hir_id, bm);
                }
            }
            hir::PatKind::Struct(_, fields, _) => {
                for field in fields {
                    self.visit_field_id(field.hir_id);
                }
            }
            _ => {}
        };

        self.visit_pat_adjustments(p.span, p.hir_id);

        self.visit_node_id(p.span, p.hir_id);
        intravisit::walk_pat(self, p);
    }

    fn visit_local(&mut self, l: &'tcx hir::Local<'tcx>) {
        intravisit::walk_local(self, l);
        let var_ty = self.fcx.local_ty(l.span, l.hir_id).decl_ty;
        let var_ty = self.resolve(var_ty, &l.span);
        self.write_ty_to_typeck_results(l.hir_id, var_ty);
    }

    fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) {
        intravisit::walk_ty(self, hir_ty);
        let ty = self.fcx.node_ty(hir_ty.hir_id);
        let ty = self.resolve(ty, &hir_ty.span);
        self.write_ty_to_typeck_results(hir_ty.hir_id, ty);
    }

    fn visit_infer(&mut self, inf: &'tcx hir::InferArg) {
        intravisit::walk_inf(self, inf);
        // Ignore cases where the inference is a const.
        if let Some(ty) = self.fcx.node_ty_opt(inf.hir_id) {
            let ty = self.resolve(ty, &inf.span);
            self.write_ty_to_typeck_results(inf.hir_id, ty);
        }
    }
}

impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
    fn eval_closure_size(&mut self) {
        let mut res: FxHashMap<LocalDefId, ClosureSizeProfileData<'tcx>> = Default::default();
        for (&closure_def_id, data) in self.fcx.typeck_results.borrow().closure_size_eval.iter() {
            let closure_hir_id = self.tcx().hir().local_def_id_to_hir_id(closure_def_id);

            let data = self.resolve(*data, &closure_hir_id);

            res.insert(closure_def_id, data);
        }

        self.typeck_results.closure_size_eval = res;
    }
    fn visit_min_capture_map(&mut self) {
        let mut min_captures_wb = ty::MinCaptureInformationMap::with_capacity_and_hasher(
            self.fcx.typeck_results.borrow().closure_min_captures.len(),
            Default::default(),
        );
        for (&closure_def_id, root_min_captures) in
            self.fcx.typeck_results.borrow().closure_min_captures.iter()
        {
            let mut root_var_map_wb = ty::RootVariableMinCaptureList::with_capacity_and_hasher(
                root_min_captures.len(),
                Default::default(),
            );
            for (var_hir_id, min_list) in root_min_captures.iter() {
                let min_list_wb = min_list
                    .iter()
                    .map(|captured_place| {
                        let locatable = captured_place.info.path_expr_id.unwrap_or_else(|| {
                            self.tcx().hir().local_def_id_to_hir_id(closure_def_id)
                        });

                        self.resolve(captured_place.clone(), &locatable)
                    })
                    .collect();
                root_var_map_wb.insert(*var_hir_id, min_list_wb);
            }
            min_captures_wb.insert(closure_def_id, root_var_map_wb);
        }

        self.typeck_results.closure_min_captures = min_captures_wb;
    }

    fn visit_fake_reads_map(&mut self) {
        let mut resolved_closure_fake_reads: FxHashMap<
            LocalDefId,
            Vec<(HirPlace<'tcx>, FakeReadCause, hir::HirId)>,
        > = Default::default();
        for (&closure_def_id, fake_reads) in
            self.fcx.typeck_results.borrow().closure_fake_reads.iter()
        {
            let mut resolved_fake_reads = Vec::<(HirPlace<'tcx>, FakeReadCause, hir::HirId)>::new();
            for (place, cause, hir_id) in fake_reads.iter() {
                let locatable = self.tcx().hir().local_def_id_to_hir_id(closure_def_id);

                let resolved_fake_read = self.resolve(place.clone(), &locatable);
                resolved_fake_reads.push((resolved_fake_read, *cause, *hir_id));
            }
            resolved_closure_fake_reads.insert(closure_def_id, resolved_fake_reads);
        }
        self.typeck_results.closure_fake_reads = resolved_closure_fake_reads;
    }

    fn visit_closures(&mut self) {
        let fcx_typeck_results = self.fcx.typeck_results.borrow();
        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
        let common_hir_owner = fcx_typeck_results.hir_owner;

        for (id, origin) in fcx_typeck_results.closure_kind_origins().iter() {
            let hir_id = hir::HirId { owner: common_hir_owner, local_id: *id };
            let place_span = origin.0;
            let place = self.resolve(origin.1.clone(), &place_span);
            self.typeck_results.closure_kind_origins_mut().insert(hir_id, (place_span, place));
        }
    }

    fn visit_coercion_casts(&mut self) {
        let fcx_typeck_results = self.fcx.typeck_results.borrow();
        let fcx_coercion_casts = fcx_typeck_results.coercion_casts();
        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);

        for local_id in fcx_coercion_casts {
            self.typeck_results.set_coercion_cast(*local_id);
        }
    }

    fn visit_user_provided_tys(&mut self) {
        let fcx_typeck_results = self.fcx.typeck_results.borrow();
        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
        let common_hir_owner = fcx_typeck_results.hir_owner;

        let mut errors_buffer = Vec::new();
        for (&local_id, c_ty) in fcx_typeck_results.user_provided_types().iter() {
            let hir_id = hir::HirId { owner: common_hir_owner, local_id };

            if cfg!(debug_assertions) && c_ty.needs_infer() {
                span_bug!(
                    hir_id.to_span(self.fcx.tcx),
                    "writeback: `{:?}` has inference variables",
                    c_ty
                );
            };

            self.typeck_results.user_provided_types_mut().insert(hir_id, *c_ty);

            if let ty::UserType::TypeOf(_, user_substs) = c_ty.value {
                if self.rustc_dump_user_substs {
                    // This is a unit-testing mechanism.
                    let span = self.tcx().hir().span(hir_id);
                    // We need to buffer the errors in order to guarantee a consistent
                    // order when emitting them.
                    let err = self
                        .tcx()
                        .sess
                        .struct_span_err(span, &format!("user substs: {:?}", user_substs));
                    err.buffer(&mut errors_buffer);
                }
            }
        }

        if !errors_buffer.is_empty() {
            errors_buffer.sort_by_key(|diag| diag.span.primary_span());
            for mut diag in errors_buffer {
                self.tcx().sess.diagnostic().emit_diagnostic(&mut diag);
            }
        }
    }

    fn visit_user_provided_sigs(&mut self) {
        let fcx_typeck_results = self.fcx.typeck_results.borrow();
        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);

        for (&def_id, c_sig) in fcx_typeck_results.user_provided_sigs.iter() {
            if cfg!(debug_assertions) && c_sig.needs_infer() {
                span_bug!(
                    self.fcx.tcx.hir().span_if_local(def_id).unwrap(),
                    "writeback: `{:?}` has inference variables",
                    c_sig
                );
            };

            self.typeck_results.user_provided_sigs.insert(def_id, *c_sig);
        }
    }

    fn visit_generator_interior_types(&mut self) {
        let fcx_typeck_results = self.fcx.typeck_results.borrow();
        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
        self.typeck_results.generator_interior_types =
            fcx_typeck_results.generator_interior_types.clone();
    }

    #[instrument(skip(self), level = "debug")]
    fn visit_opaque_types(&mut self) {
        let opaque_types =
            self.fcx.infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
        for (opaque_type_key, decl) in opaque_types {
            let hidden_type = match decl.origin {
                hir::OpaqueTyOrigin::FnReturn(_) | hir::OpaqueTyOrigin::AsyncFn(_) => {
                    let ty = self.resolve(decl.hidden_type.ty, &decl.hidden_type.span);
                    struct RecursionChecker {
                        def_id: LocalDefId,
                    }
                    impl<'tcx> ty::TypeVisitor<'tcx> for RecursionChecker {
                        type BreakTy = ();
                        fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
                            if let ty::Opaque(def_id, _) = *t.kind() {
                                if def_id == self.def_id.to_def_id() {
                                    return ControlFlow::Break(());
                                }
                            }
                            t.super_visit_with(self)
                        }
                    }
                    if ty
                        .visit_with(&mut RecursionChecker { def_id: opaque_type_key.def_id })
                        .is_break()
                    {
                        return;
                    }
                    Some(ty)
                }
                hir::OpaqueTyOrigin::TyAlias => None,
            };
            self.typeck_results.concrete_opaque_types.insert(opaque_type_key.def_id, hidden_type);
        }
    }

    fn visit_field_id(&mut self, hir_id: hir::HirId) {
        if let Some(index) = self.fcx.typeck_results.borrow_mut().field_indices_mut().remove(hir_id)
        {
            self.typeck_results.field_indices_mut().insert(hir_id, index);
        }
    }

    #[instrument(skip(self, span), level = "debug")]
    fn visit_node_id(&mut self, span: Span, hir_id: hir::HirId) {
        // Export associated path extensions and method resolutions.
        if let Some(def) =
            self.fcx.typeck_results.borrow_mut().type_dependent_defs_mut().remove(hir_id)
        {
            self.typeck_results.type_dependent_defs_mut().insert(hir_id, def);
        }

        // Resolve any borrowings for the node with id `node_id`
        self.visit_adjustments(span, hir_id);

        // Resolve the type of the node with id `node_id`
        let n_ty = self.fcx.node_ty(hir_id);
        let n_ty = self.resolve(n_ty, &span);
        self.write_ty_to_typeck_results(hir_id, n_ty);
        debug!(?n_ty);

        // Resolve any substitutions
        if let Some(substs) = self.fcx.typeck_results.borrow().node_substs_opt(hir_id) {
            let substs = self.resolve(substs, &span);
            debug!("write_substs_to_tcx({:?}, {:?})", hir_id, substs);
            assert!(!substs.needs_infer() && !substs.has_placeholders());
            self.typeck_results.node_substs_mut().insert(hir_id, substs);
        }
    }

    #[instrument(skip(self, span), level = "debug")]
    fn visit_adjustments(&mut self, span: Span, hir_id: hir::HirId) {
        let adjustment = self.fcx.typeck_results.borrow_mut().adjustments_mut().remove(hir_id);
        match adjustment {
            None => {
                debug!("no adjustments for node");
            }

            Some(adjustment) => {
                let resolved_adjustment = self.resolve(adjustment, &span);
                debug!(?resolved_adjustment);
                self.typeck_results.adjustments_mut().insert(hir_id, resolved_adjustment);
            }
        }
    }

    #[instrument(skip(self, span), level = "debug")]
    fn visit_pat_adjustments(&mut self, span: Span, hir_id: hir::HirId) {
        let adjustment = self.fcx.typeck_results.borrow_mut().pat_adjustments_mut().remove(hir_id);
        match adjustment {
            None => {
                debug!("no pat_adjustments for node");
            }

            Some(adjustment) => {
                let resolved_adjustment = self.resolve(adjustment, &span);
                debug!(?resolved_adjustment);
                self.typeck_results.pat_adjustments_mut().insert(hir_id, resolved_adjustment);
            }
        }
    }

    fn visit_liberated_fn_sigs(&mut self) {
        let fcx_typeck_results = self.fcx.typeck_results.borrow();
        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
        let common_hir_owner = fcx_typeck_results.hir_owner;

        for (&local_id, &fn_sig) in fcx_typeck_results.liberated_fn_sigs().iter() {
            let hir_id = hir::HirId { owner: common_hir_owner, local_id };
            let fn_sig = self.resolve(fn_sig, &hir_id);
            self.typeck_results.liberated_fn_sigs_mut().insert(hir_id, fn_sig);
        }
    }

    fn visit_fru_field_types(&mut self) {
        let fcx_typeck_results = self.fcx.typeck_results.borrow();
        assert_eq!(fcx_typeck_results.hir_owner, self.typeck_results.hir_owner);
        let common_hir_owner = fcx_typeck_results.hir_owner;

        for (&local_id, ftys) in fcx_typeck_results.fru_field_types().iter() {
            let hir_id = hir::HirId { owner: common_hir_owner, local_id };
            let ftys = self.resolve(ftys.clone(), &hir_id);
            self.typeck_results.fru_field_types_mut().insert(hir_id, ftys);
        }
    }

    fn resolve<T>(&mut self, x: T, span: &dyn Locatable) -> T
    where
        T: TypeFoldable<'tcx>,
    {
        let mut resolver = Resolver::new(self.fcx, span, self.body);
        let x = x.fold_with(&mut resolver);
        if cfg!(debug_assertions) && x.needs_infer() {
            span_bug!(span.to_span(self.fcx.tcx), "writeback: `{:?}` has inference variables", x);
        }

        // We may have introduced e.g. `ty::Error`, if inference failed, make sure
        // to mark the `TypeckResults` as tainted in that case, so that downstream
        // users of the typeck results don't produce extra errors, or worse, ICEs.
        if resolver.replaced_with_error {
            // FIXME(eddyb) keep track of `ErrorGuaranteed` from where the error was emitted.
            self.typeck_results.tainted_by_errors =
                Some(ErrorGuaranteed::unchecked_claim_error_was_emitted());
        }

        x
    }
}

pub(crate) trait Locatable {
    fn to_span(&self, tcx: TyCtxt<'_>) -> Span;
}

impl Locatable for Span {
    fn to_span(&self, _: TyCtxt<'_>) -> Span {
        *self
    }
}

impl Locatable for hir::HirId {
    fn to_span(&self, tcx: TyCtxt<'_>) -> Span {
        tcx.hir().span(*self)
    }
}

/// The Resolver. This is the type folding engine that detects
/// unresolved types and so forth.
struct Resolver<'cx, 'tcx> {
    tcx: TyCtxt<'tcx>,
    infcx: &'cx InferCtxt<'cx, 'tcx>,
    span: &'cx dyn Locatable,
    body: &'tcx hir::Body<'tcx>,

    /// Set to `true` if any `Ty` or `ty::Const` had to be replaced with an `Error`.
    replaced_with_error: bool,
}

impl<'cx, 'tcx> Resolver<'cx, 'tcx> {
    fn new(
        fcx: &'cx FnCtxt<'cx, 'tcx>,
        span: &'cx dyn Locatable,
        body: &'tcx hir::Body<'tcx>,
    ) -> Resolver<'cx, 'tcx> {
        Resolver { tcx: fcx.tcx, infcx: fcx, span, body, replaced_with_error: false }
    }

    fn report_type_error(&self, t: Ty<'tcx>) {
        if !self.tcx.sess.has_errors().is_some() {
            self.infcx
                .emit_inference_failure_err(
                    Some(self.body.id()),
                    self.span.to_span(self.tcx),
                    t.into(),
                    E0282,
                    false,
                )
                .emit();
        }
    }

    fn report_const_error(&self, c: ty::Const<'tcx>) {
        if self.tcx.sess.has_errors().is_none() {
            self.infcx
                .emit_inference_failure_err(
                    Some(self.body.id()),
                    self.span.to_span(self.tcx),
                    c.into(),
                    E0282,
                    false,
                )
                .emit();
        }
    }
}

struct EraseEarlyRegions<'tcx> {
    tcx: TyCtxt<'tcx>,
}

impl<'tcx> TypeFolder<'tcx> for EraseEarlyRegions<'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
        self.tcx
    }
    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        if ty.has_type_flags(ty::TypeFlags::HAS_FREE_REGIONS) {
            ty.super_fold_with(self)
        } else {
            ty
        }
    }
    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        if r.is_late_bound() { r } else { self.tcx.lifetimes.re_erased }
    }
}

impl<'cx, 'tcx> TypeFolder<'tcx> for Resolver<'cx, 'tcx> {
    fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        match self.infcx.fully_resolve(t) {
            Ok(t) => {
                // Do not anonymize late-bound regions
                // (e.g. keep `for<'a>` named `for<'a>`).
                // This allows NLL to generate error messages that
                // refer to the higher-ranked lifetime names written by the user.
                EraseEarlyRegions { tcx: self.tcx }.fold_ty(t)
            }
            Err(_) => {
                debug!("Resolver::fold_ty: input type `{:?}` not fully resolvable", t);
                self.report_type_error(t);
                self.replaced_with_error = true;
                self.tcx().ty_error()
            }
        }
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        debug_assert!(!r.is_late_bound(), "Should not be resolving bound region.");
        self.tcx.lifetimes.re_erased
    }

    fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
        match self.infcx.fully_resolve(ct) {
            Ok(ct) => self.tcx.erase_regions(ct),
            Err(_) => {
                debug!("Resolver::fold_const: input const `{:?}` not fully resolvable", ct);
                self.report_const_error(ct);
                self.replaced_with_error = true;
                self.tcx().const_error(ct.ty())
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// During type check, we store promises with the result of trait
// lookup rather than the actual results (because the results are not
// necessarily available immediately). These routines unwind the
// promises. It is expected that we will have already reported any
// errors that may be encountered, so if the promises store an error,
// a dummy result is returned.