1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
use rustc_data_structures::fx::FxIndexSet;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, Binder, Predicate, PredicateKind, ToPredicate, Ty, TyCtxt};
use rustc_trait_selection::traits;

fn sized_constraint_for_ty<'tcx>(
    tcx: TyCtxt<'tcx>,
    adtdef: ty::AdtDef<'tcx>,
    ty: Ty<'tcx>,
) -> Vec<Ty<'tcx>> {
    use rustc_type_ir::sty::TyKind::*;

    let result = match ty.kind() {
        Bool | Char | Int(..) | Uint(..) | Float(..) | RawPtr(..) | Ref(..) | FnDef(..)
        | FnPtr(_) | Array(..) | Closure(..) | Generator(..) | Never => vec![],

        Str | Dynamic(..) | Slice(_) | Foreign(..) | Error(_) | GeneratorWitness(..) => {
            // these are never sized - return the target type
            vec![ty]
        }

        Tuple(ref tys) => match tys.last() {
            None => vec![],
            Some(&ty) => sized_constraint_for_ty(tcx, adtdef, ty),
        },

        Adt(adt, substs) => {
            // recursive case
            let adt_tys = adt.sized_constraint(tcx);
            debug!("sized_constraint_for_ty({:?}) intermediate = {:?}", ty, adt_tys);
            adt_tys
                .0
                .iter()
                .map(|ty| adt_tys.rebind(*ty).subst(tcx, substs))
                .flat_map(|ty| sized_constraint_for_ty(tcx, adtdef, ty))
                .collect()
        }

        Projection(..) | Opaque(..) => {
            // must calculate explicitly.
            // FIXME: consider special-casing always-Sized projections
            vec![ty]
        }

        Param(..) => {
            // perf hack: if there is a `T: Sized` bound, then
            // we know that `T` is Sized and do not need to check
            // it on the impl.

            let Some(sized_trait) = tcx.lang_items().sized_trait() else { return vec![ty] };
            let sized_predicate = ty::Binder::dummy(ty::TraitRef {
                def_id: sized_trait,
                substs: tcx.mk_substs_trait(ty, &[]),
            })
            .without_const()
            .to_predicate(tcx);
            let predicates = tcx.predicates_of(adtdef.did()).predicates;
            if predicates.iter().any(|(p, _)| *p == sized_predicate) { vec![] } else { vec![ty] }
        }

        Placeholder(..) | Bound(..) | Infer(..) => {
            bug!("unexpected type `{:?}` in sized_constraint_for_ty", ty)
        }
    };
    debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
    result
}

fn impl_defaultness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::Defaultness {
    match tcx.hir().get_by_def_id(def_id.expect_local()) {
        hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(impl_), .. }) => impl_.defaultness,
        hir::Node::ImplItem(hir::ImplItem { defaultness, .. })
        | hir::Node::TraitItem(hir::TraitItem { defaultness, .. }) => *defaultness,
        node => {
            bug!("`impl_defaultness` called on {:?}", node);
        }
    }
}

/// Calculates the `Sized` constraint.
///
/// In fact, there are only a few options for the types in the constraint:
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - an Error, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AdtSizedConstraint<'_> {
    let def = tcx.adt_def(def_id);

    let result = tcx.mk_type_list(
        def.variants()
            .iter()
            .flat_map(|v| v.fields.last())
            .flat_map(|f| sized_constraint_for_ty(tcx, def, tcx.type_of(f.did))),
    );

    debug!("adt_sized_constraint: {:?} => {:?}", def, result);

    ty::AdtSizedConstraint(result)
}

/// See `ParamEnv` struct definition for details.
fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
    // The param_env of an impl Trait type is its defining function's param_env
    if let Some(parent) = ty::is_impl_trait_defn(tcx, def_id) {
        return param_env(tcx, parent.to_def_id());
    }
    // Compute the bounds on Self and the type parameters.

    let ty::InstantiatedPredicates { mut predicates, .. } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of an "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so outside of type inference you can be
    // sure that this will succeed without errors anyway.

    if tcx.sess.opts.unstable_opts.chalk {
        let environment = well_formed_types_in_env(tcx, def_id);
        predicates.extend(environment);
    }

    let local_did = def_id.as_local();
    let hir_id = local_did.map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id));

    let constness = match hir_id {
        Some(hir_id) => match tcx.hir().get(hir_id) {
            hir::Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Fn(..), .. })
                if tcx.is_const_default_method(def_id) =>
            {
                hir::Constness::Const
            }

            hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(..), .. })
            | hir::Node::Item(hir::Item { kind: hir::ItemKind::Static(..), .. })
            | hir::Node::TraitItem(hir::TraitItem {
                kind: hir::TraitItemKind::Const(..), ..
            })
            | hir::Node::AnonConst(_)
            | hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. })
            | hir::Node::ImplItem(hir::ImplItem {
                kind:
                    hir::ImplItemKind::Fn(
                        hir::FnSig {
                            header: hir::FnHeader { constness: hir::Constness::Const, .. },
                            ..
                        },
                        ..,
                    ),
                ..
            }) => hir::Constness::Const,

            hir::Node::ImplItem(hir::ImplItem {
                kind: hir::ImplItemKind::TyAlias(..) | hir::ImplItemKind::Fn(..),
                ..
            }) => {
                let parent_hir_id = tcx.hir().get_parent_node(hir_id);
                match tcx.hir().get(parent_hir_id) {
                    hir::Node::Item(hir::Item {
                        kind: hir::ItemKind::Impl(hir::Impl { constness, .. }),
                        ..
                    }) => *constness,
                    _ => span_bug!(
                        tcx.def_span(parent_hir_id.owner),
                        "impl item's parent node is not an impl",
                    ),
                }
            }

            hir::Node::Item(hir::Item {
                kind:
                    hir::ItemKind::Fn(hir::FnSig { header: hir::FnHeader { constness, .. }, .. }, ..),
                ..
            })
            | hir::Node::TraitItem(hir::TraitItem {
                kind:
                    hir::TraitItemKind::Fn(
                        hir::FnSig { header: hir::FnHeader { constness, .. }, .. },
                        ..,
                    ),
                ..
            })
            | hir::Node::Item(hir::Item {
                kind: hir::ItemKind::Impl(hir::Impl { constness, .. }),
                ..
            }) => *constness,

            _ => hir::Constness::NotConst,
        },
        None => hir::Constness::NotConst,
    };

    let unnormalized_env = ty::ParamEnv::new(
        tcx.intern_predicates(&predicates),
        traits::Reveal::UserFacing,
        constness,
    );

    let body_id =
        local_did.and_then(|id| tcx.hir().maybe_body_owned_by(id).map(|body| body.hir_id));
    let body_id = match body_id {
        Some(id) => id,
        None if hir_id.is_some() => hir_id.unwrap(),
        _ => hir::CRATE_HIR_ID,
    };

    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, unnormalized_env, cause)
}

/// Elaborate the environment.
///
/// Collect a list of `Predicate`'s used for building the `ParamEnv`. Adds `TypeWellFormedFromEnv`'s
/// that are assumed to be well-formed (because they come from the environment).
///
/// Used only in chalk mode.
fn well_formed_types_in_env<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: DefId,
) -> &'tcx ty::List<Predicate<'tcx>> {
    use rustc_hir::{ForeignItemKind, ImplItemKind, ItemKind, Node, TraitItemKind};
    use rustc_middle::ty::subst::GenericArgKind;

    debug!("environment(def_id = {:?})", def_id);

    // The environment of an impl Trait type is its defining function's environment.
    if let Some(parent) = ty::is_impl_trait_defn(tcx, def_id) {
        return well_formed_types_in_env(tcx, parent.to_def_id());
    }

    // Compute the bounds on `Self` and the type parameters.
    let ty::InstantiatedPredicates { predicates, .. } =
        tcx.predicates_of(def_id).instantiate_identity(tcx);

    let clauses = predicates.into_iter();

    if !def_id.is_local() {
        return ty::List::empty();
    }
    let node = tcx.hir().get_by_def_id(def_id.expect_local());

    enum NodeKind {
        TraitImpl,
        InherentImpl,
        Fn,
        Other,
    }

    let node_kind = match node {
        Node::TraitItem(item) => match item.kind {
            TraitItemKind::Fn(..) => NodeKind::Fn,
            _ => NodeKind::Other,
        },

        Node::ImplItem(item) => match item.kind {
            ImplItemKind::Fn(..) => NodeKind::Fn,
            _ => NodeKind::Other,
        },

        Node::Item(item) => match item.kind {
            ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) => NodeKind::TraitImpl,
            ItemKind::Impl(hir::Impl { of_trait: None, .. }) => NodeKind::InherentImpl,
            ItemKind::Fn(..) => NodeKind::Fn,
            _ => NodeKind::Other,
        },

        Node::ForeignItem(item) => match item.kind {
            ForeignItemKind::Fn(..) => NodeKind::Fn,
            _ => NodeKind::Other,
        },

        // FIXME: closures?
        _ => NodeKind::Other,
    };

    // FIXME(eddyb) isn't the unordered nature of this a hazard?
    let mut inputs = FxIndexSet::default();

    match node_kind {
        // In a trait impl, we assume that the header trait ref and all its
        // constituents are well-formed.
        NodeKind::TraitImpl => {
            let trait_ref = tcx.impl_trait_ref(def_id).expect("not an impl");

            // FIXME(chalk): this has problems because of late-bound regions
            //inputs.extend(trait_ref.substs.iter().flat_map(|arg| arg.walk()));
            inputs.extend(trait_ref.substs.iter());
        }

        // In an inherent impl, we assume that the receiver type and all its
        // constituents are well-formed.
        NodeKind::InherentImpl => {
            let self_ty = tcx.type_of(def_id);
            inputs.extend(self_ty.walk());
        }

        // In an fn, we assume that the arguments and all their constituents are
        // well-formed.
        NodeKind::Fn => {
            let fn_sig = tcx.fn_sig(def_id);
            let fn_sig = tcx.liberate_late_bound_regions(def_id, fn_sig);

            inputs.extend(fn_sig.inputs().iter().flat_map(|ty| ty.walk()));
        }

        NodeKind::Other => (),
    }
    let input_clauses = inputs.into_iter().filter_map(|arg| {
        match arg.unpack() {
            GenericArgKind::Type(ty) => {
                let binder = Binder::dummy(PredicateKind::TypeWellFormedFromEnv(ty));
                Some(tcx.mk_predicate(binder))
            }

            // FIXME(eddyb) no WF conditions from lifetimes?
            GenericArgKind::Lifetime(_) => None,

            // FIXME(eddyb) support const generics in Chalk
            GenericArgKind::Const(_) => None,
        }
    });

    tcx.mk_predicates(clauses.chain(input_clauses))
}

fn param_env_reveal_all_normalized(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
    tcx.param_env(def_id).with_reveal_all_normalized(tcx)
}

fn instance_def_size_estimate<'tcx>(
    tcx: TyCtxt<'tcx>,
    instance_def: ty::InstanceDef<'tcx>,
) -> usize {
    use ty::InstanceDef;

    match instance_def {
        InstanceDef::Item(..) | InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
            mir.basic_blocks.iter().map(|bb| bb.statements.len() + 1).sum()
        }
        // Estimate the size of other compiler-generated shims to be 1.
        _ => 1,
    }
}

/// If `def_id` is an issue 33140 hack impl, returns its self type; otherwise, returns `None`.
///
/// See [`ty::ImplOverlapKind::Issue33140`] for more details.
fn issue33140_self_ty(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Ty<'_>> {
    debug!("issue33140_self_ty({:?})", def_id);

    let trait_ref = tcx
        .impl_trait_ref(def_id)
        .unwrap_or_else(|| bug!("issue33140_self_ty called on inherent impl {:?}", def_id));

    debug!("issue33140_self_ty({:?}), trait-ref={:?}", def_id, trait_ref);

    let is_marker_like = tcx.impl_polarity(def_id) == ty::ImplPolarity::Positive
        && tcx.associated_item_def_ids(trait_ref.def_id).is_empty();

    // Check whether these impls would be ok for a marker trait.
    if !is_marker_like {
        debug!("issue33140_self_ty - not marker-like!");
        return None;
    }

    // impl must be `impl Trait for dyn Marker1 + Marker2 + ...`
    if trait_ref.substs.len() != 1 {
        debug!("issue33140_self_ty - impl has substs!");
        return None;
    }

    let predicates = tcx.predicates_of(def_id);
    if predicates.parent.is_some() || !predicates.predicates.is_empty() {
        debug!("issue33140_self_ty - impl has predicates {:?}!", predicates);
        return None;
    }

    let self_ty = trait_ref.self_ty();
    let self_ty_matches = match self_ty.kind() {
        ty::Dynamic(ref data, re, _) if re.is_static() => data.principal().is_none(),
        _ => false,
    };

    if self_ty_matches {
        debug!("issue33140_self_ty - MATCHES!");
        Some(self_ty)
    } else {
        debug!("issue33140_self_ty - non-matching self type");
        None
    }
}

/// Check if a function is async.
fn asyncness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::IsAsync {
    let node = tcx.hir().get_by_def_id(def_id.expect_local());
    if let Some(fn_kind) = node.fn_kind() { fn_kind.asyncness() } else { hir::IsAsync::NotAsync }
}

/// Don't call this directly: use ``tcx.conservative_is_privately_uninhabited`` instead.
pub fn conservative_is_privately_uninhabited_raw<'tcx>(
    tcx: TyCtxt<'tcx>,
    param_env_and: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> bool {
    let (param_env, ty) = param_env_and.into_parts();
    match ty.kind() {
        ty::Never => {
            debug!("ty::Never =>");
            true
        }
        ty::Adt(def, _) if def.is_union() => {
            debug!("ty::Adt(def, _) if def.is_union() =>");
            // For now, `union`s are never considered uninhabited.
            false
        }
        ty::Adt(def, substs) => {
            debug!("ty::Adt(def, _) if def.is_not_union() =>");
            // Any ADT is uninhabited if either:
            // (a) It has no variants (i.e. an empty `enum`);
            // (b) Each of its variants (a single one in the case of a `struct`) has at least
            //     one uninhabited field.
            def.variants().iter().all(|var| {
                var.fields.iter().any(|field| {
                    let ty = tcx.bound_type_of(field.did).subst(tcx, substs);
                    tcx.conservative_is_privately_uninhabited(param_env.and(ty))
                })
            })
        }
        ty::Tuple(fields) => {
            debug!("ty::Tuple(..) =>");
            fields.iter().any(|ty| tcx.conservative_is_privately_uninhabited(param_env.and(ty)))
        }
        ty::Array(ty, len) => {
            debug!("ty::Array(ty, len) =>");
            match len.try_eval_usize(tcx, param_env) {
                Some(0) | None => false,
                // If the array is definitely non-empty, it's uninhabited if
                // the type of its elements is uninhabited.
                Some(1..) => tcx.conservative_is_privately_uninhabited(param_env.and(*ty)),
            }
        }
        ty::Ref(..) => {
            debug!("ty::Ref(..) =>");
            // References to uninitialised memory is valid for any type, including
            // uninhabited types, in unsafe code, so we treat all references as
            // inhabited.
            false
        }
        _ => {
            debug!("_ =>");
            false
        }
    }
}

pub fn provide(providers: &mut ty::query::Providers) {
    *providers = ty::query::Providers {
        asyncness,
        adt_sized_constraint,
        param_env,
        param_env_reveal_all_normalized,
        instance_def_size_estimate,
        issue33140_self_ty,
        impl_defaultness,
        conservative_is_privately_uninhabited: conservative_is_privately_uninhabited_raw,
        ..*providers
    };
}