1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::traits::CodegenObligationError;
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, Instance, TyCtxt, TypeVisitable};
use rustc_span::{sym, DUMMY_SP};
use rustc_trait_selection::traits;
use traits::{translate_substs, Reveal};

fn resolve_instance<'tcx>(
    tcx: TyCtxt<'tcx>,
    key: ty::ParamEnvAnd<'tcx, (DefId, SubstsRef<'tcx>)>,
) -> Result<Option<Instance<'tcx>>, ErrorGuaranteed> {
    let (param_env, (did, substs)) = key.into_parts();
    if let Some(did) = did.as_local() {
        if let Some(param_did) = tcx.opt_const_param_of(did) {
            return tcx.resolve_instance_of_const_arg(param_env.and((did, param_did, substs)));
        }
    }

    inner_resolve_instance(tcx, param_env.and((ty::WithOptConstParam::unknown(did), substs)))
}

fn resolve_instance_of_const_arg<'tcx>(
    tcx: TyCtxt<'tcx>,
    key: ty::ParamEnvAnd<'tcx, (LocalDefId, DefId, SubstsRef<'tcx>)>,
) -> Result<Option<Instance<'tcx>>, ErrorGuaranteed> {
    let (param_env, (did, const_param_did, substs)) = key.into_parts();
    inner_resolve_instance(
        tcx,
        param_env.and((
            ty::WithOptConstParam { did: did.to_def_id(), const_param_did: Some(const_param_did) },
            substs,
        )),
    )
}

fn inner_resolve_instance<'tcx>(
    tcx: TyCtxt<'tcx>,
    key: ty::ParamEnvAnd<'tcx, (ty::WithOptConstParam<DefId>, SubstsRef<'tcx>)>,
) -> Result<Option<Instance<'tcx>>, ErrorGuaranteed> {
    let (param_env, (def, substs)) = key.into_parts();

    let result = if let Some(trait_def_id) = tcx.trait_of_item(def.did) {
        debug!(" => associated item, attempting to find impl in param_env {:#?}", param_env);
        resolve_associated_item(tcx, def.did, param_env, trait_def_id, substs)
    } else {
        let ty = tcx.type_of(def.def_id_for_type_of());
        let item_type = tcx.subst_and_normalize_erasing_regions(substs, param_env, ty);

        let def = match *item_type.kind() {
            ty::FnDef(def_id, ..) if tcx.is_intrinsic(def_id) => {
                debug!(" => intrinsic");
                ty::InstanceDef::Intrinsic(def.did)
            }
            ty::FnDef(def_id, substs) if Some(def_id) == tcx.lang_items().drop_in_place_fn() => {
                let ty = substs.type_at(0);

                if ty.needs_drop(tcx, param_env) {
                    debug!(" => nontrivial drop glue");
                    match *ty.kind() {
                        ty::Closure(..)
                        | ty::Generator(..)
                        | ty::Tuple(..)
                        | ty::Adt(..)
                        | ty::Dynamic(..)
                        | ty::Array(..)
                        | ty::Slice(..) => {}
                        // Drop shims can only be built from ADTs.
                        _ => return Ok(None),
                    }

                    ty::InstanceDef::DropGlue(def_id, Some(ty))
                } else {
                    debug!(" => trivial drop glue");
                    ty::InstanceDef::DropGlue(def_id, None)
                }
            }
            _ => {
                debug!(" => free item");
                ty::InstanceDef::Item(def)
            }
        };
        Ok(Some(Instance { def, substs }))
    };
    debug!("inner_resolve_instance: result={:?}", result);
    result
}

fn resolve_associated_item<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_item_id: DefId,
    param_env: ty::ParamEnv<'tcx>,
    trait_id: DefId,
    rcvr_substs: SubstsRef<'tcx>,
) -> Result<Option<Instance<'tcx>>, ErrorGuaranteed> {
    debug!(?trait_item_id, ?param_env, ?trait_id, ?rcvr_substs, "resolve_associated_item");

    let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_substs);

    let vtbl = match tcx.codegen_select_candidate((param_env, ty::Binder::dummy(trait_ref))) {
        Ok(vtbl) => vtbl,
        Err(CodegenObligationError::Ambiguity) => {
            let reported = tcx.sess.delay_span_bug(
                tcx.def_span(trait_item_id),
                &format!(
                    "encountered ambiguity selecting `{trait_ref:?}` during codegen, presuming due to \
                     overflow or prior type error",
                ),
            );
            return Err(reported);
        }
        Err(CodegenObligationError::Unimplemented) => return Ok(None),
        Err(CodegenObligationError::FulfillmentError) => return Ok(None),
    };

    // Now that we know which impl is being used, we can dispatch to
    // the actual function:
    Ok(match vtbl {
        traits::ImplSource::UserDefined(impl_data) => {
            debug!(
                "resolving ImplSource::UserDefined: {:?}, {:?}, {:?}, {:?}",
                param_env, trait_item_id, rcvr_substs, impl_data
            );
            assert!(!rcvr_substs.needs_infer());
            assert!(!trait_ref.needs_infer());

            let trait_def_id = tcx.trait_id_of_impl(impl_data.impl_def_id).unwrap();
            let trait_def = tcx.trait_def(trait_def_id);
            let leaf_def = trait_def
                .ancestors(tcx, impl_data.impl_def_id)?
                .leaf_def(tcx, trait_item_id)
                .unwrap_or_else(|| {
                    bug!("{:?} not found in {:?}", trait_item_id, impl_data.impl_def_id);
                });

            let substs = tcx.infer_ctxt().enter(|infcx| {
                let param_env = param_env.with_reveal_all_normalized(tcx);
                let substs = rcvr_substs.rebase_onto(tcx, trait_def_id, impl_data.substs);
                let substs = translate_substs(
                    &infcx,
                    param_env,
                    impl_data.impl_def_id,
                    substs,
                    leaf_def.defining_node,
                );
                infcx.tcx.erase_regions(substs)
            });

            // Since this is a trait item, we need to see if the item is either a trait default item
            // or a specialization because we can't resolve those unless we can `Reveal::All`.
            // NOTE: This should be kept in sync with the similar code in
            // `rustc_trait_selection::traits::project::assemble_candidates_from_impls()`.
            let eligible = if leaf_def.is_final() {
                // Non-specializable items are always projectable.
                true
            } else {
                // Only reveal a specializable default if we're past type-checking
                // and the obligation is monomorphic, otherwise passes such as
                // transmute checking and polymorphic MIR optimizations could
                // get a result which isn't correct for all monomorphizations.
                if param_env.reveal() == Reveal::All {
                    !trait_ref.still_further_specializable()
                } else {
                    false
                }
            };

            if !eligible {
                return Ok(None);
            }

            // If the item does not have a value, then we cannot return an instance.
            if !leaf_def.item.defaultness(tcx).has_value() {
                return Ok(None);
            }

            let substs = tcx.erase_regions(substs);

            // Check if we just resolved an associated `const` declaration from
            // a `trait` to an associated `const` definition in an `impl`, where
            // the definition in the `impl` has the wrong type (for which an
            // error has already been/will be emitted elsewhere).
            //
            // NB: this may be expensive, we try to skip it in all the cases where
            // we know the error would've been caught (e.g. in an upstream crate).
            //
            // A better approach might be to just introduce a query (returning
            // `Result<(), ErrorGuaranteed>`) for the check that `rustc_typeck`
            // performs (i.e. that the definition's type in the `impl` matches
            // the declaration in the `trait`), so that we can cheaply check
            // here if it failed, instead of approximating it.
            if leaf_def.item.kind == ty::AssocKind::Const
                && trait_item_id != leaf_def.item.def_id
                && leaf_def.item.def_id.is_local()
            {
                let normalized_type_of = |def_id, substs| {
                    tcx.subst_and_normalize_erasing_regions(substs, param_env, tcx.type_of(def_id))
                };

                let original_ty = normalized_type_of(trait_item_id, rcvr_substs);
                let resolved_ty = normalized_type_of(leaf_def.item.def_id, substs);

                if original_ty != resolved_ty {
                    let msg = format!(
                        "Instance::resolve: inconsistent associated `const` type: \
                         was `{}: {}` but resolved to `{}: {}`",
                        tcx.def_path_str_with_substs(trait_item_id, rcvr_substs),
                        original_ty,
                        tcx.def_path_str_with_substs(leaf_def.item.def_id, substs),
                        resolved_ty,
                    );
                    let span = tcx.def_span(leaf_def.item.def_id);
                    let reported = tcx.sess.delay_span_bug(span, &msg);

                    return Err(reported);
                }
            }

            Some(ty::Instance::new(leaf_def.item.def_id, substs))
        }
        traits::ImplSource::Generator(generator_data) => Some(Instance {
            def: ty::InstanceDef::Item(ty::WithOptConstParam::unknown(
                generator_data.generator_def_id,
            )),
            substs: generator_data.substs,
        }),
        traits::ImplSource::Closure(closure_data) => {
            let trait_closure_kind = tcx.fn_trait_kind_from_lang_item(trait_id).unwrap();
            Instance::resolve_closure(
                tcx,
                closure_data.closure_def_id,
                closure_data.substs,
                trait_closure_kind,
            )
        }
        traits::ImplSource::FnPointer(ref data) => match data.fn_ty.kind() {
            ty::FnDef(..) | ty::FnPtr(..) => Some(Instance {
                def: ty::InstanceDef::FnPtrShim(trait_item_id, data.fn_ty),
                substs: rcvr_substs,
            }),
            _ => None,
        },
        traits::ImplSource::Object(ref data) => {
            if let Some(index) = traits::get_vtable_index_of_object_method(tcx, data, trait_item_id)
            {
                Some(Instance {
                    def: ty::InstanceDef::Virtual(trait_item_id, index),
                    substs: rcvr_substs,
                })
            } else {
                None
            }
        }
        traits::ImplSource::Builtin(..) => {
            if Some(trait_ref.def_id) == tcx.lang_items().clone_trait() {
                // FIXME(eddyb) use lang items for methods instead of names.
                let name = tcx.item_name(trait_item_id);
                if name == sym::clone {
                    let self_ty = trait_ref.self_ty();

                    let is_copy = self_ty.is_copy_modulo_regions(tcx.at(DUMMY_SP), param_env);
                    match self_ty.kind() {
                        _ if is_copy => (),
                        ty::Generator(..)
                        | ty::GeneratorWitness(..)
                        | ty::Closure(..)
                        | ty::Tuple(..) => {}
                        _ => return Ok(None),
                    };

                    Some(Instance {
                        def: ty::InstanceDef::CloneShim(trait_item_id, self_ty),
                        substs: rcvr_substs,
                    })
                } else {
                    assert_eq!(name, sym::clone_from);

                    // Use the default `fn clone_from` from `trait Clone`.
                    let substs = tcx.erase_regions(rcvr_substs);
                    Some(ty::Instance::new(trait_item_id, substs))
                }
            } else {
                None
            }
        }
        traits::ImplSource::AutoImpl(..)
        | traits::ImplSource::Param(..)
        | traits::ImplSource::TraitAlias(..)
        | traits::ImplSource::DiscriminantKind(..)
        | traits::ImplSource::Pointee(..)
        | traits::ImplSource::TraitUpcasting(_)
        | traits::ImplSource::ConstDestruct(_)
        | traits::ImplSource::Tuple => None,
    })
}

pub fn provide(providers: &mut ty::query::Providers) {
    *providers =
        ty::query::Providers { resolve_instance, resolve_instance_of_const_arg, ..*providers };
}