1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use super::{Byte, Ref, Tree, Uninhabited};
use crate::{Map, Set};
use std::fmt;
use std::sync::atomic::{AtomicU32, Ordering};

/// A non-deterministic finite automaton (NFA) that represents the layout of a type.
/// The transmutability of two given types is computed by comparing their `Nfa`s.
#[derive(PartialEq, Debug)]
pub(crate) struct Nfa<R>
where
    R: Ref,
{
    pub(crate) transitions: Map<State, Map<Transition<R>, Set<State>>>,
    pub(crate) start: State,
    pub(crate) accepting: State,
}

/// The states in a `Nfa` represent byte offsets.
#[derive(Hash, Eq, PartialEq, PartialOrd, Ord, Copy, Clone)]
pub(crate) struct State(u32);

/// The transitions between states in a `Nfa` reflect bit validity.
#[derive(Hash, Eq, PartialEq, Clone, Copy)]
pub(crate) enum Transition<R>
where
    R: Ref,
{
    Byte(Byte),
    Ref(R),
}

impl fmt::Debug for State {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "S_{}", self.0)
    }
}

impl<R> fmt::Debug for Transition<R>
where
    R: Ref,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match &self {
            Self::Byte(b) => b.fmt(f),
            Self::Ref(r) => r.fmt(f),
        }
    }
}

impl<R> Nfa<R>
where
    R: Ref,
{
    pub(crate) fn unit() -> Self {
        let transitions: Map<State, Map<Transition<R>, Set<State>>> = Map::default();
        let start = State::new();
        let accepting = start;

        Nfa { transitions, start, accepting }
    }

    pub(crate) fn from_byte(byte: Byte) -> Self {
        let mut transitions: Map<State, Map<Transition<R>, Set<State>>> = Map::default();
        let start = State::new();
        let accepting = State::new();

        let source = transitions.entry(start).or_default();
        let edge = source.entry(Transition::Byte(byte)).or_default();
        edge.insert(accepting);

        Nfa { transitions, start, accepting }
    }

    pub(crate) fn from_ref(r: R) -> Self {
        let mut transitions: Map<State, Map<Transition<R>, Set<State>>> = Map::default();
        let start = State::new();
        let accepting = State::new();

        let source = transitions.entry(start).or_default();
        let edge = source.entry(Transition::Ref(r)).or_default();
        edge.insert(accepting);

        Nfa { transitions, start, accepting }
    }

    pub(crate) fn from_tree(tree: Tree<!, R>) -> Result<Self, Uninhabited> {
        Ok(match tree {
            Tree::Byte(b) => Self::from_byte(b),
            Tree::Def(..) => unreachable!(),
            Tree::Ref(r) => Self::from_ref(r),
            Tree::Alt(alts) => {
                let mut alts = alts.into_iter().map(Self::from_tree);
                let mut nfa = alts.next().ok_or(Uninhabited)??;
                for alt in alts {
                    nfa = nfa.union(alt?);
                }
                nfa
            }
            Tree::Seq(elts) => {
                let mut nfa = Self::unit();
                for elt in elts.into_iter().map(Self::from_tree) {
                    nfa = nfa.concat(elt?);
                }
                nfa
            }
        })
    }

    /// Concatenate two `Nfa`s.
    pub(crate) fn concat(self, other: Self) -> Self {
        if self.start == self.accepting {
            return other;
        } else if other.start == other.accepting {
            return self;
        }

        let start = self.start;
        let accepting = other.accepting;

        let mut transitions: Map<State, Map<Transition<R>, Set<State>>> = self.transitions;

        for (source, transition) in other.transitions {
            let fix_state = |state| if state == other.start { self.accepting } else { state };
            let entry = transitions.entry(fix_state(source)).or_default();
            for (edge, destinations) in transition {
                let entry = entry.entry(edge.clone()).or_default();
                for destination in destinations {
                    entry.insert(fix_state(destination));
                }
            }
        }

        Self { transitions, start, accepting }
    }

    /// Compute the union of two `Nfa`s.
    pub(crate) fn union(self, other: Self) -> Self {
        let start = self.start;
        let accepting = self.accepting;

        let mut transitions: Map<State, Map<Transition<R>, Set<State>>> = self.transitions.clone();

        for (&(mut source), transition) in other.transitions.iter() {
            // if source is starting state of `other`, replace with starting state of `self`
            if source == other.start {
                source = self.start;
            }
            let entry = transitions.entry(source).or_default();
            for (edge, destinations) in transition {
                let entry = entry.entry(edge.clone()).or_default();
                for &(mut destination) in destinations {
                    // if dest is accepting state of `other`, replace with accepting state of `self`
                    if destination == other.accepting {
                        destination = self.accepting;
                    }
                    entry.insert(destination);
                }
            }
        }
        Self { transitions, start, accepting }
    }

    pub(crate) fn edges_from(&self, start: State) -> Option<&Map<Transition<R>, Set<State>>> {
        self.transitions.get(&start)
    }
}

impl State {
    pub(crate) fn new() -> Self {
        static COUNTER: AtomicU32 = AtomicU32::new(0);
        Self(COUNTER.fetch_add(1, Ordering::SeqCst))
    }
}