1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// The classification code for the x86_64 ABI is taken from the clay language
// https://github.com/jckarter/clay/blob/master/compiler/src/externals.cpp

use crate::abi::call::{ArgAbi, CastTarget, FnAbi, Reg, RegKind};
use crate::abi::{self, Abi, HasDataLayout, Size, TyAbiInterface, TyAndLayout};

/// Classification of "eightbyte" components.
// N.B., the order of the variants is from general to specific,
// such that `unify(a, b)` is the "smaller" of `a` and `b`.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
enum Class {
    Int,
    Sse,
    SseUp,
}

#[derive(Clone, Copy, Debug)]
struct Memory;

// Currently supported vector size (AVX-512).
const LARGEST_VECTOR_SIZE: usize = 512;
const MAX_EIGHTBYTES: usize = LARGEST_VECTOR_SIZE / 64;

fn classify_arg<'a, Ty, C>(
    cx: &C,
    arg: &ArgAbi<'a, Ty>,
) -> Result<[Option<Class>; MAX_EIGHTBYTES], Memory>
where
    Ty: TyAbiInterface<'a, C> + Copy,
    C: HasDataLayout,
{
    fn classify<'a, Ty, C>(
        cx: &C,
        layout: TyAndLayout<'a, Ty>,
        cls: &mut [Option<Class>],
        off: Size,
    ) -> Result<(), Memory>
    where
        Ty: TyAbiInterface<'a, C> + Copy,
        C: HasDataLayout,
    {
        if !off.is_aligned(layout.align.abi) {
            if !layout.is_zst() {
                return Err(Memory);
            }
            return Ok(());
        }

        let mut c = match layout.abi {
            Abi::Uninhabited => return Ok(()),

            Abi::Scalar(scalar) => match scalar.primitive() {
                abi::Int(..) | abi::Pointer => Class::Int,
                abi::F32 | abi::F64 => Class::Sse,
            },

            Abi::Vector { .. } => Class::Sse,

            Abi::ScalarPair(..) | Abi::Aggregate { .. } => {
                for i in 0..layout.fields.count() {
                    let field_off = off + layout.fields.offset(i);
                    classify(cx, layout.field(cx, i), cls, field_off)?;
                }

                match &layout.variants {
                    abi::Variants::Single { .. } => {}
                    abi::Variants::Multiple { variants, .. } => {
                        // Treat enum variants like union members.
                        for variant_idx in variants.indices() {
                            classify(cx, layout.for_variant(cx, variant_idx), cls, off)?;
                        }
                    }
                }

                return Ok(());
            }
        };

        // Fill in `cls` for scalars (Int/Sse) and vectors (Sse).
        let first = (off.bytes() / 8) as usize;
        let last = ((off.bytes() + layout.size.bytes() - 1) / 8) as usize;
        for cls in &mut cls[first..=last] {
            *cls = Some(cls.map_or(c, |old| old.min(c)));

            // Everything after the first Sse "eightbyte"
            // component is the upper half of a register.
            if c == Class::Sse {
                c = Class::SseUp;
            }
        }

        Ok(())
    }

    let n = ((arg.layout.size.bytes() + 7) / 8) as usize;
    if n > MAX_EIGHTBYTES {
        return Err(Memory);
    }

    let mut cls = [None; MAX_EIGHTBYTES];
    classify(cx, arg.layout, &mut cls, Size::ZERO)?;
    if n > 2 {
        if cls[0] != Some(Class::Sse) {
            return Err(Memory);
        }
        if cls[1..n].iter().any(|&c| c != Some(Class::SseUp)) {
            return Err(Memory);
        }
    } else {
        let mut i = 0;
        while i < n {
            if cls[i] == Some(Class::SseUp) {
                cls[i] = Some(Class::Sse);
            } else if cls[i] == Some(Class::Sse) {
                i += 1;
                while i != n && cls[i] == Some(Class::SseUp) {
                    i += 1;
                }
            } else {
                i += 1;
            }
        }
    }

    Ok(cls)
}

fn reg_component(cls: &[Option<Class>], i: &mut usize, size: Size) -> Option<Reg> {
    if *i >= cls.len() {
        return None;
    }

    match cls[*i] {
        None => None,
        Some(Class::Int) => {
            *i += 1;
            Some(if size.bytes() < 8 { Reg { kind: RegKind::Integer, size } } else { Reg::i64() })
        }
        Some(Class::Sse) => {
            let vec_len =
                1 + cls[*i + 1..].iter().take_while(|&&c| c == Some(Class::SseUp)).count();
            *i += vec_len;
            Some(if vec_len == 1 {
                match size.bytes() {
                    4 => Reg::f32(),
                    _ => Reg::f64(),
                }
            } else {
                Reg { kind: RegKind::Vector, size: Size::from_bytes(8) * (vec_len as u64) }
            })
        }
        Some(c) => unreachable!("reg_component: unhandled class {:?}", c),
    }
}

fn cast_target(cls: &[Option<Class>], size: Size) -> CastTarget {
    let mut i = 0;
    let lo = reg_component(cls, &mut i, size).unwrap();
    let offset = Size::from_bytes(8) * (i as u64);
    let mut target = CastTarget::from(lo);
    if size > offset {
        if let Some(hi) = reg_component(cls, &mut i, size - offset) {
            target = CastTarget::pair(lo, hi);
        }
    }
    assert_eq!(reg_component(cls, &mut i, Size::ZERO), None);
    target
}

const MAX_INT_REGS: usize = 6; // RDI, RSI, RDX, RCX, R8, R9
const MAX_SSE_REGS: usize = 8; // XMM0-7

pub fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>)
where
    Ty: TyAbiInterface<'a, C> + Copy,
    C: HasDataLayout,
{
    let mut int_regs = MAX_INT_REGS;
    let mut sse_regs = MAX_SSE_REGS;

    let mut x86_64_arg_or_ret = |arg: &mut ArgAbi<'a, Ty>, is_arg: bool| {
        let mut cls_or_mem = classify_arg(cx, arg);

        if is_arg {
            if let Ok(cls) = cls_or_mem {
                let mut needed_int = 0;
                let mut needed_sse = 0;
                for c in cls {
                    match c {
                        Some(Class::Int) => needed_int += 1,
                        Some(Class::Sse) => needed_sse += 1,
                        _ => {}
                    }
                }
                match (int_regs.checked_sub(needed_int), sse_regs.checked_sub(needed_sse)) {
                    (Some(left_int), Some(left_sse)) => {
                        int_regs = left_int;
                        sse_regs = left_sse;
                    }
                    _ => {
                        // Not enough registers for this argument, so it will be
                        // passed on the stack, but we only mark aggregates
                        // explicitly as indirect `byval` arguments, as LLVM will
                        // automatically put immediates on the stack itself.
                        if arg.layout.is_aggregate() {
                            cls_or_mem = Err(Memory);
                        }
                    }
                }
            }
        }

        match cls_or_mem {
            Err(Memory) => {
                if is_arg {
                    arg.make_indirect_byval();
                } else {
                    // `sret` parameter thus one less integer register available
                    arg.make_indirect();
                    // NOTE(eddyb) return is handled first, so no registers
                    // should've been used yet.
                    assert_eq!(int_regs, MAX_INT_REGS);
                    int_regs -= 1;
                }
            }
            Ok(ref cls) => {
                // split into sized chunks passed individually
                if arg.layout.is_aggregate() {
                    let size = arg.layout.size;
                    arg.cast_to(cast_target(cls, size))
                } else {
                    arg.extend_integer_width_to(32);
                }
            }
        }
    };

    if !fn_abi.ret.is_ignore() {
        x86_64_arg_or_ret(&mut fn_abi.ret, false);
    }

    for arg in fn_abi.args.iter_mut() {
        if arg.is_ignore() {
            continue;
        }
        x86_64_arg_or_ret(arg, true);
    }
}