1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
use crate::abi::call::{ArgAttribute, FnAbi, PassMode, Reg, RegKind};
use crate::abi::{HasDataLayout, TyAbiInterface};
use crate::spec::HasTargetSpec;
#[derive(PartialEq)]
pub enum Flavor {
General,
FastcallOrVectorcall,
}
pub fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>, flavor: Flavor)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout + HasTargetSpec,
{
if !fn_abi.ret.is_ignore() {
if fn_abi.ret.layout.is_aggregate() {
let t = cx.target_spec();
if t.abi_return_struct_as_int {
if !t.is_like_msvc && fn_abi.ret.layout.is_single_fp_element(cx) {
match fn_abi.ret.layout.size.bytes() {
4 => fn_abi.ret.cast_to(Reg::f32()),
8 => fn_abi.ret.cast_to(Reg::f64()),
_ => fn_abi.ret.make_indirect(),
}
} else {
match fn_abi.ret.layout.size.bytes() {
1 => fn_abi.ret.cast_to(Reg::i8()),
2 => fn_abi.ret.cast_to(Reg::i16()),
4 => fn_abi.ret.cast_to(Reg::i32()),
8 => fn_abi.ret.cast_to(Reg::i64()),
_ => fn_abi.ret.make_indirect(),
}
}
} else {
fn_abi.ret.make_indirect();
}
} else {
fn_abi.ret.extend_integer_width_to(32);
}
}
for arg in fn_abi.args.iter_mut() {
if arg.is_ignore() {
continue;
}
if arg.layout.is_aggregate() {
arg.make_indirect_byval();
} else {
arg.extend_integer_width_to(32);
}
}
if flavor == Flavor::FastcallOrVectorcall {
let mut free_regs = 2;
for arg in fn_abi.args.iter_mut() {
let attrs = match arg.mode {
PassMode::Ignore
| PassMode::Indirect { attrs: _, extra_attrs: None, on_stack: _ } => {
continue;
}
PassMode::Direct(ref mut attrs) => attrs,
PassMode::Pair(..)
| PassMode::Indirect { attrs: _, extra_attrs: Some(_), on_stack: _ }
| PassMode::Cast(..) => {
unreachable!("x86 shouldn't be passing arguments by {:?}", arg.mode)
}
};
let unit = arg.layout.homogeneous_aggregate(cx).unwrap().unit().unwrap();
assert_eq!(unit.size, arg.layout.size);
if unit.kind == RegKind::Float {
continue;
}
let size_in_regs = (arg.layout.size.bits() + 31) / 32;
if size_in_regs == 0 {
continue;
}
if size_in_regs > free_regs {
break;
}
free_regs -= size_in_regs;
if arg.layout.size.bits() <= 32 && unit.kind == RegKind::Integer {
attrs.set(ArgAttribute::InReg);
}
if free_regs == 0 {
break;
}
}
}
}