1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
use crate::abi::call::{ArgAbi, FnAbi, Uniform};
use crate::abi::{HasDataLayout, TyAbiInterface};
fn unwrap_trivial_aggregate<'a, Ty, C>(cx: &C, val: &mut ArgAbi<'a, Ty>) -> bool
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if val.layout.is_aggregate() {
if let Some(unit) = val.layout.homogeneous_aggregate(cx).ok().and_then(|ha| ha.unit()) {
let size = val.layout.size;
if unit.size == size {
val.cast_to(Uniform { unit, total: size });
return true;
}
}
}
false
}
fn classify_ret<'a, Ty, C>(cx: &C, ret: &mut ArgAbi<'a, Ty>)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
ret.extend_integer_width_to(32);
if ret.layout.is_aggregate() && !unwrap_trivial_aggregate(cx, ret) {
ret.make_indirect();
}
}
fn classify_arg<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
arg.extend_integer_width_to(32);
if arg.layout.is_aggregate() && !unwrap_trivial_aggregate(cx, arg) {
arg.make_indirect_byval();
}
}
pub fn compute_c_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !fn_abi.ret.is_ignore() {
classify_ret(cx, &mut fn_abi.ret);
}
for arg in fn_abi.args.iter_mut() {
if arg.is_ignore() {
continue;
}
classify_arg(cx, arg);
}
}
pub fn compute_wasm_abi_info<Ty>(fn_abi: &mut FnAbi<'_, Ty>) {
if !fn_abi.ret.is_ignore() {
classify_ret(&mut fn_abi.ret);
}
for arg in fn_abi.args.iter_mut() {
if arg.is_ignore() {
continue;
}
classify_arg(arg);
}
fn classify_ret<Ty>(ret: &mut ArgAbi<'_, Ty>) {
ret.extend_integer_width_to(32);
}
fn classify_arg<Ty>(arg: &mut ArgAbi<'_, Ty>) {
arg.extend_integer_width_to(32);
}
}