1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
//! This module defines the `DepNode` type which the compiler uses to represent
//! nodes in the dependency graph. A `DepNode` consists of a `DepKind` (which
//! specifies the kind of thing it represents, like a piece of HIR, MIR, etc)
//! and a `Fingerprint`, a 128 bit hash value the exact meaning of which
//! depends on the node's `DepKind`. Together, the kind and the fingerprint
//! fully identify a dependency node, even across multiple compilation sessions.
//! In other words, the value of the fingerprint does not depend on anything
//! that is specific to a given compilation session, like an unpredictable
//! interning key (e.g., NodeId, DefId, Symbol) or the numeric value of a
//! pointer. The concept behind this could be compared to how git commit hashes
//! uniquely identify a given commit and has a few advantages:
//!
//! * A `DepNode` can simply be serialized to disk and loaded in another session
//! without the need to do any "rebasing (like we have to do for Spans and
//! NodeIds) or "retracing" like we had to do for `DefId` in earlier
//! implementations of the dependency graph.
//! * A `Fingerprint` is just a bunch of bits, which allows `DepNode` to
//! implement `Copy`, `Sync`, `Send`, `Freeze`, etc.
//! * Since we just have a bit pattern, `DepNode` can be mapped from disk into
//! memory without any post-processing (e.g., "abomination-style" pointer
//! reconstruction).
//! * Because a `DepNode` is self-contained, we can instantiate `DepNodes` that
//! refer to things that do not exist anymore. In previous implementations
//! `DepNode` contained a `DefId`. A `DepNode` referring to something that
//! had been removed between the previous and the current compilation session
//! could not be instantiated because the current compilation session
//! contained no `DefId` for thing that had been removed.
//!
//! `DepNode` definition happens in `rustc_middle` with the `define_dep_nodes!()` macro.
//! This macro defines the `DepKind` enum and a corresponding `DepConstructor` enum. The
//! `DepConstructor` enum links a `DepKind` to the parameters that are needed at runtime in order
//! to construct a valid `DepNode` fingerprint.
//!
//! Because the macro sees what parameters a given `DepKind` requires, it can
//! "infer" some properties for each kind of `DepNode`:
//!
//! * Whether a `DepNode` of a given kind has any parameters at all. Some
//! `DepNode`s could represent global concepts with only one value.
//! * Whether it is possible, in principle, to reconstruct a query key from a
//! given `DepNode`. Many `DepKind`s only require a single `DefId` parameter,
//! in which case it is possible to map the node's fingerprint back to the
//! `DefId` it was computed from. In other cases, too much information gets
//! lost during fingerprint computation.
use super::{DepContext, DepKind, FingerprintStyle};
use crate::ich::StableHashingContext;
use rustc_data_structures::fingerprint::{Fingerprint, PackedFingerprint};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use std::fmt;
use std::hash::Hash;
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
pub struct DepNode<K> {
pub kind: K,
pub hash: PackedFingerprint,
}
impl<K: DepKind> DepNode<K> {
/// Creates a new, parameterless DepNode. This method will assert
/// that the DepNode corresponding to the given DepKind actually
/// does not require any parameters.
pub fn new_no_params<Ctxt>(tcx: Ctxt, kind: K) -> DepNode<K>
where
Ctxt: super::DepContext<DepKind = K>,
{
debug_assert_eq!(tcx.fingerprint_style(kind), FingerprintStyle::Unit);
DepNode { kind, hash: Fingerprint::ZERO.into() }
}
pub fn construct<Ctxt, Key>(tcx: Ctxt, kind: K, arg: &Key) -> DepNode<K>
where
Ctxt: super::DepContext<DepKind = K>,
Key: DepNodeParams<Ctxt>,
{
let hash = arg.to_fingerprint(tcx);
let dep_node = DepNode { kind, hash: hash.into() };
#[cfg(debug_assertions)]
{
if !tcx.fingerprint_style(kind).reconstructible()
&& (tcx.sess().opts.unstable_opts.incremental_info
|| tcx.sess().opts.unstable_opts.query_dep_graph)
{
tcx.dep_graph().register_dep_node_debug_str(dep_node, || arg.to_debug_str(tcx));
}
}
dep_node
}
}
impl<K: DepKind> fmt::Debug for DepNode<K> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
K::debug_node(self, f)
}
}
pub trait DepNodeParams<Ctxt: DepContext>: fmt::Debug + Sized {
fn fingerprint_style() -> FingerprintStyle;
/// This method turns the parameters of a DepNodeConstructor into an opaque
/// Fingerprint to be used in DepNode.
/// Not all DepNodeParams support being turned into a Fingerprint (they
/// don't need to if the corresponding DepNode is anonymous).
fn to_fingerprint(&self, _: Ctxt) -> Fingerprint {
panic!("Not implemented. Accidentally called on anonymous node?")
}
fn to_debug_str(&self, _: Ctxt) -> String {
format!("{:?}", self)
}
/// This method tries to recover the query key from the given `DepNode`,
/// something which is needed when forcing `DepNode`s during red-green
/// evaluation. The query system will only call this method if
/// `fingerprint_style()` is not `FingerprintStyle::Opaque`.
/// It is always valid to return `None` here, in which case incremental
/// compilation will treat the query as having changed instead of forcing it.
fn recover(tcx: Ctxt, dep_node: &DepNode<Ctxt::DepKind>) -> Option<Self>;
}
impl<Ctxt: DepContext, T> DepNodeParams<Ctxt> for T
where
T: for<'a> HashStable<StableHashingContext<'a>> + fmt::Debug,
{
#[inline(always)]
default fn fingerprint_style() -> FingerprintStyle {
FingerprintStyle::Opaque
}
#[inline(always)]
default fn to_fingerprint(&self, tcx: Ctxt) -> Fingerprint {
tcx.with_stable_hashing_context(|mut hcx| {
let mut hasher = StableHasher::new();
self.hash_stable(&mut hcx, &mut hasher);
hasher.finish()
})
}
#[inline(always)]
default fn to_debug_str(&self, _: Ctxt) -> String {
format!("{:?}", *self)
}
#[inline(always)]
default fn recover(_: Ctxt, _: &DepNode<Ctxt::DepKind>) -> Option<Self> {
None
}
}
/// A "work product" corresponds to a `.o` (or other) file that we
/// save in between runs. These IDs do not have a `DefId` but rather
/// some independent path or string that persists between runs without
/// the need to be mapped or unmapped. (This ensures we can serialize
/// them even in the absence of a tcx.)
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[derive(Encodable, Decodable)]
pub struct WorkProductId {
hash: Fingerprint,
}
impl WorkProductId {
pub fn from_cgu_name(cgu_name: &str) -> WorkProductId {
let mut hasher = StableHasher::new();
cgu_name.hash(&mut hasher);
WorkProductId { hash: hasher.finish() }
}
}
impl<HCX> HashStable<HCX> for WorkProductId {
#[inline]
fn hash_stable(&self, hcx: &mut HCX, hasher: &mut StableHasher) {
self.hash.hash_stable(hcx, hasher)
}
}