1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
use super::Error;

use itertools::Itertools;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::graph::dominators::{self, Dominators};
use rustc_data_structures::graph::{self, GraphSuccessors, WithNumNodes, WithStartNode};
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::coverage::*;
use rustc_middle::mir::{self, BasicBlock, BasicBlockData, Terminator, TerminatorKind};

use std::ops::{Index, IndexMut};

const ID_SEPARATOR: &str = ",";

/// A coverage-specific simplification of the MIR control flow graph (CFG). The `CoverageGraph`s
/// nodes are `BasicCoverageBlock`s, which encompass one or more MIR `BasicBlock`s, plus a
/// `CoverageKind` counter (to be added by `CoverageCounters::make_bcb_counters`), and an optional
/// set of additional counters--if needed--to count incoming edges, if there are more than one.
/// (These "edge counters" are eventually converted into new MIR `BasicBlock`s.)
#[derive(Debug)]
pub(super) struct CoverageGraph {
    bcbs: IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
    bb_to_bcb: IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
    pub successors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
    pub predecessors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
    dominators: Option<Dominators<BasicCoverageBlock>>,
}

impl CoverageGraph {
    pub fn from_mir(mir_body: &mir::Body<'_>) -> Self {
        let (bcbs, bb_to_bcb) = Self::compute_basic_coverage_blocks(mir_body);

        // Pre-transform MIR `BasicBlock` successors and predecessors into the BasicCoverageBlock
        // equivalents. Note that since the BasicCoverageBlock graph has been fully simplified, the
        // each predecessor of a BCB leader_bb should be in a unique BCB. It is possible for a
        // `SwitchInt` to have multiple targets to the same destination `BasicBlock`, so
        // de-duplication is required. This is done without reordering the successors.

        let bcbs_len = bcbs.len();
        let mut seen = IndexVec::from_elem_n(false, bcbs_len);
        let successors = IndexVec::from_fn_n(
            |bcb| {
                for b in seen.iter_mut() {
                    *b = false;
                }
                let bcb_data = &bcbs[bcb];
                let mut bcb_successors = Vec::new();
                for successor in
                    bcb_filtered_successors(&mir_body, &bcb_data.terminator(mir_body).kind)
                        .filter_map(|successor_bb| bb_to_bcb[successor_bb])
                {
                    if !seen[successor] {
                        seen[successor] = true;
                        bcb_successors.push(successor);
                    }
                }
                bcb_successors
            },
            bcbs.len(),
        );

        let mut predecessors = IndexVec::from_elem_n(Vec::new(), bcbs.len());
        for (bcb, bcb_successors) in successors.iter_enumerated() {
            for &successor in bcb_successors {
                predecessors[successor].push(bcb);
            }
        }

        let mut basic_coverage_blocks =
            Self { bcbs, bb_to_bcb, successors, predecessors, dominators: None };
        let dominators = dominators::dominators(&basic_coverage_blocks);
        basic_coverage_blocks.dominators = Some(dominators);
        basic_coverage_blocks
    }

    fn compute_basic_coverage_blocks(
        mir_body: &mir::Body<'_>,
    ) -> (
        IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
        IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
    ) {
        let num_basic_blocks = mir_body.basic_blocks.len();
        let mut bcbs = IndexVec::with_capacity(num_basic_blocks);
        let mut bb_to_bcb = IndexVec::from_elem_n(None, num_basic_blocks);

        // Walk the MIR CFG using a Preorder traversal, which starts from `START_BLOCK` and follows
        // each block terminator's `successors()`. Coverage spans must map to actual source code,
        // so compiler generated blocks and paths can be ignored. To that end, the CFG traversal
        // intentionally omits unwind paths.
        // FIXME(#78544): MIR InstrumentCoverage: Improve coverage of `#[should_panic]` tests and
        // `catch_unwind()` handlers.
        let mir_cfg_without_unwind = ShortCircuitPreorder::new(&mir_body, bcb_filtered_successors);

        let mut basic_blocks = Vec::new();
        for (bb, data) in mir_cfg_without_unwind {
            if let Some(last) = basic_blocks.last() {
                let predecessors = &mir_body.basic_blocks.predecessors()[bb];
                if predecessors.len() > 1 || !predecessors.contains(last) {
                    // The `bb` has more than one _incoming_ edge, and should start its own
                    // `BasicCoverageBlockData`. (Note, the `basic_blocks` vector does not yet
                    // include `bb`; it contains a sequence of one or more sequential basic_blocks
                    // with no intermediate branches in or out. Save these as a new
                    // `BasicCoverageBlockData` before starting the new one.)
                    Self::add_basic_coverage_block(
                        &mut bcbs,
                        &mut bb_to_bcb,
                        basic_blocks.split_off(0),
                    );
                    debug!(
                        "  because {}",
                        if predecessors.len() > 1 {
                            "predecessors.len() > 1".to_owned()
                        } else {
                            format!("bb {} is not in precessors: {:?}", bb.index(), predecessors)
                        }
                    );
                }
            }
            basic_blocks.push(bb);

            let term = data.terminator();

            match term.kind {
                TerminatorKind::Return { .. }
                | TerminatorKind::Abort
                | TerminatorKind::Yield { .. }
                | TerminatorKind::SwitchInt { .. } => {
                    // The `bb` has more than one _outgoing_ edge, or exits the function. Save the
                    // current sequence of `basic_blocks` gathered to this point, as a new
                    // `BasicCoverageBlockData`.
                    Self::add_basic_coverage_block(
                        &mut bcbs,
                        &mut bb_to_bcb,
                        basic_blocks.split_off(0),
                    );
                    debug!("  because term.kind = {:?}", term.kind);
                    // Note that this condition is based on `TerminatorKind`, even though it
                    // theoretically boils down to `successors().len() != 1`; that is, either zero
                    // (e.g., `Return`, `Abort`) or multiple successors (e.g., `SwitchInt`), but
                    // since the BCB CFG ignores things like unwind branches (which exist in the
                    // `Terminator`s `successors()` list) checking the number of successors won't
                    // work.
                }

                // The following `TerminatorKind`s are either not expected outside an unwind branch,
                // or they should not (under normal circumstances) branch. Coverage graphs are
                // simplified by assuring coverage results are accurate for program executions that
                // don't panic.
                //
                // Programs that panic and unwind may record slightly inaccurate coverage results
                // for a coverage region containing the `Terminator` that began the panic. This
                // is as intended. (See Issue #78544 for a possible future option to support
                // coverage in test programs that panic.)
                TerminatorKind::Goto { .. }
                | TerminatorKind::Resume
                | TerminatorKind::Unreachable
                | TerminatorKind::Drop { .. }
                | TerminatorKind::DropAndReplace { .. }
                | TerminatorKind::Call { .. }
                | TerminatorKind::GeneratorDrop
                | TerminatorKind::Assert { .. }
                | TerminatorKind::FalseEdge { .. }
                | TerminatorKind::FalseUnwind { .. }
                | TerminatorKind::InlineAsm { .. } => {}
            }
        }

        if !basic_blocks.is_empty() {
            // process any remaining basic_blocks into a final `BasicCoverageBlockData`
            Self::add_basic_coverage_block(&mut bcbs, &mut bb_to_bcb, basic_blocks.split_off(0));
            debug!("  because the end of the MIR CFG was reached while traversing");
        }

        (bcbs, bb_to_bcb)
    }

    fn add_basic_coverage_block(
        bcbs: &mut IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
        bb_to_bcb: &mut IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
        basic_blocks: Vec<BasicBlock>,
    ) {
        let bcb = BasicCoverageBlock::from_usize(bcbs.len());
        for &bb in basic_blocks.iter() {
            bb_to_bcb[bb] = Some(bcb);
        }
        let bcb_data = BasicCoverageBlockData::from(basic_blocks);
        debug!("adding bcb{}: {:?}", bcb.index(), bcb_data);
        bcbs.push(bcb_data);
    }

    #[inline(always)]
    pub fn iter_enumerated(
        &self,
    ) -> impl Iterator<Item = (BasicCoverageBlock, &BasicCoverageBlockData)> {
        self.bcbs.iter_enumerated()
    }

    #[inline(always)]
    pub fn iter_enumerated_mut(
        &mut self,
    ) -> impl Iterator<Item = (BasicCoverageBlock, &mut BasicCoverageBlockData)> {
        self.bcbs.iter_enumerated_mut()
    }

    #[inline(always)]
    pub fn bcb_from_bb(&self, bb: BasicBlock) -> Option<BasicCoverageBlock> {
        if bb.index() < self.bb_to_bcb.len() { self.bb_to_bcb[bb] } else { None }
    }

    #[inline(always)]
    pub fn is_dominated_by(&self, node: BasicCoverageBlock, dom: BasicCoverageBlock) -> bool {
        self.dominators.as_ref().unwrap().is_dominated_by(node, dom)
    }

    #[inline(always)]
    pub fn dominators(&self) -> &Dominators<BasicCoverageBlock> {
        self.dominators.as_ref().unwrap()
    }
}

impl Index<BasicCoverageBlock> for CoverageGraph {
    type Output = BasicCoverageBlockData;

    #[inline]
    fn index(&self, index: BasicCoverageBlock) -> &BasicCoverageBlockData {
        &self.bcbs[index]
    }
}

impl IndexMut<BasicCoverageBlock> for CoverageGraph {
    #[inline]
    fn index_mut(&mut self, index: BasicCoverageBlock) -> &mut BasicCoverageBlockData {
        &mut self.bcbs[index]
    }
}

impl graph::DirectedGraph for CoverageGraph {
    type Node = BasicCoverageBlock;
}

impl graph::WithNumNodes for CoverageGraph {
    #[inline]
    fn num_nodes(&self) -> usize {
        self.bcbs.len()
    }
}

impl graph::WithStartNode for CoverageGraph {
    #[inline]
    fn start_node(&self) -> Self::Node {
        self.bcb_from_bb(mir::START_BLOCK)
            .expect("mir::START_BLOCK should be in a BasicCoverageBlock")
    }
}

type BcbSuccessors<'graph> = std::slice::Iter<'graph, BasicCoverageBlock>;

impl<'graph> graph::GraphSuccessors<'graph> for CoverageGraph {
    type Item = BasicCoverageBlock;
    type Iter = std::iter::Cloned<BcbSuccessors<'graph>>;
}

impl graph::WithSuccessors for CoverageGraph {
    #[inline]
    fn successors(&self, node: Self::Node) -> <Self as GraphSuccessors<'_>>::Iter {
        self.successors[node].iter().cloned()
    }
}

impl<'graph> graph::GraphPredecessors<'graph> for CoverageGraph {
    type Item = BasicCoverageBlock;
    type Iter = std::iter::Copied<std::slice::Iter<'graph, BasicCoverageBlock>>;
}

impl graph::WithPredecessors for CoverageGraph {
    #[inline]
    fn predecessors(&self, node: Self::Node) -> <Self as graph::GraphPredecessors<'_>>::Iter {
        self.predecessors[node].iter().copied()
    }
}

rustc_index::newtype_index! {
    /// A node in the control-flow graph of CoverageGraph.
    pub(super) struct BasicCoverageBlock {
        DEBUG_FORMAT = "bcb{}",
        const START_BCB = 0,
    }
}

/// `BasicCoverageBlockData` holds the data indexed by a `BasicCoverageBlock`.
///
/// A `BasicCoverageBlock` (BCB) represents the maximal-length sequence of MIR `BasicBlock`s without
/// conditional branches, and form a new, simplified, coverage-specific Control Flow Graph, without
/// altering the original MIR CFG.
///
/// Note that running the MIR `SimplifyCfg` transform is not sufficient (and therefore not
/// necessary). The BCB-based CFG is a more aggressive simplification. For example:
///
///   * The BCB CFG ignores (trims) branches not relevant to coverage, such as unwind-related code,
///     that is injected by the Rust compiler but has no physical source code to count. This also
///     means a BasicBlock with a `Call` terminator can be merged into its primary successor target
///     block, in the same BCB. (But, note: Issue #78544: "MIR InstrumentCoverage: Improve coverage
///     of `#[should_panic]` tests and `catch_unwind()` handlers")
///   * Some BasicBlock terminators support Rust-specific concerns--like borrow-checking--that are
///     not relevant to coverage analysis. `FalseUnwind`, for example, can be treated the same as
///     a `Goto`, and merged with its successor into the same BCB.
///
/// Each BCB with at least one computed `CoverageSpan` will have no more than one `Counter`.
/// In some cases, a BCB's execution count can be computed by `Expression`. Additional
/// disjoint `CoverageSpan`s in a BCB can also be counted by `Expression` (by adding `ZERO`
/// to the BCB's primary counter or expression).
///
/// The BCB CFG is critical to simplifying the coverage analysis by ensuring graph path-based
/// queries (`is_dominated_by()`, `predecessors`, `successors`, etc.) have branch (control flow)
/// significance.
#[derive(Debug, Clone)]
pub(super) struct BasicCoverageBlockData {
    pub basic_blocks: Vec<BasicBlock>,
    pub counter_kind: Option<CoverageKind>,
    edge_from_bcbs: Option<FxHashMap<BasicCoverageBlock, CoverageKind>>,
}

impl BasicCoverageBlockData {
    pub fn from(basic_blocks: Vec<BasicBlock>) -> Self {
        assert!(basic_blocks.len() > 0);
        Self { basic_blocks, counter_kind: None, edge_from_bcbs: None }
    }

    #[inline(always)]
    pub fn leader_bb(&self) -> BasicBlock {
        self.basic_blocks[0]
    }

    #[inline(always)]
    pub fn last_bb(&self) -> BasicBlock {
        *self.basic_blocks.last().unwrap()
    }

    #[inline(always)]
    pub fn terminator<'a, 'tcx>(&self, mir_body: &'a mir::Body<'tcx>) -> &'a Terminator<'tcx> {
        &mir_body[self.last_bb()].terminator()
    }

    pub fn set_counter(
        &mut self,
        counter_kind: CoverageKind,
    ) -> Result<ExpressionOperandId, Error> {
        debug_assert!(
            // If the BCB has an edge counter (to be injected into a new `BasicBlock`), it can also
            // have an expression (to be injected into an existing `BasicBlock` represented by this
            // `BasicCoverageBlock`).
            self.edge_from_bcbs.is_none() || counter_kind.is_expression(),
            "attempt to add a `Counter` to a BCB target with existing incoming edge counters"
        );
        let operand = counter_kind.as_operand_id();
        if let Some(replaced) = self.counter_kind.replace(counter_kind) {
            Error::from_string(format!(
                "attempt to set a BasicCoverageBlock coverage counter more than once; \
                {:?} already had counter {:?}",
                self, replaced,
            ))
        } else {
            Ok(operand)
        }
    }

    #[inline(always)]
    pub fn counter(&self) -> Option<&CoverageKind> {
        self.counter_kind.as_ref()
    }

    #[inline(always)]
    pub fn take_counter(&mut self) -> Option<CoverageKind> {
        self.counter_kind.take()
    }

    pub fn set_edge_counter_from(
        &mut self,
        from_bcb: BasicCoverageBlock,
        counter_kind: CoverageKind,
    ) -> Result<ExpressionOperandId, Error> {
        if level_enabled!(tracing::Level::DEBUG) {
            // If the BCB has an edge counter (to be injected into a new `BasicBlock`), it can also
            // have an expression (to be injected into an existing `BasicBlock` represented by this
            // `BasicCoverageBlock`).
            if !self.counter_kind.as_ref().map_or(true, |c| c.is_expression()) {
                return Error::from_string(format!(
                    "attempt to add an incoming edge counter from {:?} when the target BCB already \
                    has a `Counter`",
                    from_bcb
                ));
            }
        }
        let operand = counter_kind.as_operand_id();
        if let Some(replaced) =
            self.edge_from_bcbs.get_or_insert_default().insert(from_bcb, counter_kind)
        {
            Error::from_string(format!(
                "attempt to set an edge counter more than once; from_bcb: \
                {:?} already had counter {:?}",
                from_bcb, replaced,
            ))
        } else {
            Ok(operand)
        }
    }

    #[inline]
    pub fn edge_counter_from(&self, from_bcb: BasicCoverageBlock) -> Option<&CoverageKind> {
        if let Some(edge_from_bcbs) = &self.edge_from_bcbs {
            edge_from_bcbs.get(&from_bcb)
        } else {
            None
        }
    }

    #[inline]
    pub fn take_edge_counters(
        &mut self,
    ) -> Option<impl Iterator<Item = (BasicCoverageBlock, CoverageKind)>> {
        self.edge_from_bcbs.take().map(|m| m.into_iter())
    }

    pub fn id(&self) -> String {
        format!("@{}", self.basic_blocks.iter().map(|bb| bb.index().to_string()).join(ID_SEPARATOR))
    }
}

/// Represents a successor from a branching BasicCoverageBlock (such as the arms of a `SwitchInt`)
/// as either the successor BCB itself, if it has only one incoming edge, or the successor _plus_
/// the specific branching BCB, representing the edge between the two. The latter case
/// distinguishes this incoming edge from other incoming edges to the same `target_bcb`.
#[derive(Clone, Copy, PartialEq, Eq)]
pub(super) struct BcbBranch {
    pub edge_from_bcb: Option<BasicCoverageBlock>,
    pub target_bcb: BasicCoverageBlock,
}

impl BcbBranch {
    pub fn from_to(
        from_bcb: BasicCoverageBlock,
        to_bcb: BasicCoverageBlock,
        basic_coverage_blocks: &CoverageGraph,
    ) -> Self {
        let edge_from_bcb = if basic_coverage_blocks.predecessors[to_bcb].len() > 1 {
            Some(from_bcb)
        } else {
            None
        };
        Self { edge_from_bcb, target_bcb: to_bcb }
    }

    pub fn counter<'a>(
        &self,
        basic_coverage_blocks: &'a CoverageGraph,
    ) -> Option<&'a CoverageKind> {
        if let Some(from_bcb) = self.edge_from_bcb {
            basic_coverage_blocks[self.target_bcb].edge_counter_from(from_bcb)
        } else {
            basic_coverage_blocks[self.target_bcb].counter()
        }
    }

    pub fn is_only_path_to_target(&self) -> bool {
        self.edge_from_bcb.is_none()
    }
}

impl std::fmt::Debug for BcbBranch {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        if let Some(from_bcb) = self.edge_from_bcb {
            write!(fmt, "{:?}->{:?}", from_bcb, self.target_bcb)
        } else {
            write!(fmt, "{:?}", self.target_bcb)
        }
    }
}

// Returns the `Terminator`s non-unwind successors.
// FIXME(#78544): MIR InstrumentCoverage: Improve coverage of `#[should_panic]` tests and
// `catch_unwind()` handlers.
fn bcb_filtered_successors<'a, 'tcx>(
    body: &'a mir::Body<'tcx>,
    term_kind: &'a TerminatorKind<'tcx>,
) -> Box<dyn Iterator<Item = BasicBlock> + 'a> {
    Box::new(
        match &term_kind {
            // SwitchInt successors are never unwind, and all of them should be traversed.
            TerminatorKind::SwitchInt { ref targets, .. } => {
                None.into_iter().chain(targets.all_targets().into_iter().copied())
            }
            // For all other kinds, return only the first successor, if any, and ignore unwinds.
            // NOTE: `chain(&[])` is required to coerce the `option::iter` (from
            // `next().into_iter()`) into the `mir::Successors` aliased type.
            _ => term_kind.successors().next().into_iter().chain((&[]).into_iter().copied()),
        }
        .filter(move |&successor| body[successor].terminator().kind != TerminatorKind::Unreachable),
    )
}

/// Maintains separate worklists for each loop in the BasicCoverageBlock CFG, plus one for the
/// CoverageGraph outside all loops. This supports traversing the BCB CFG in a way that
/// ensures a loop is completely traversed before processing Blocks after the end of the loop.
#[derive(Debug)]
pub(super) struct TraversalContext {
    /// From one or more backedges returning to a loop header.
    pub loop_backedges: Option<(Vec<BasicCoverageBlock>, BasicCoverageBlock)>,

    /// worklist, to be traversed, of CoverageGraph in the loop with the given loop
    /// backedges, such that the loop is the inner inner-most loop containing these
    /// CoverageGraph
    pub worklist: Vec<BasicCoverageBlock>,
}

pub(super) struct TraverseCoverageGraphWithLoops {
    pub backedges: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
    pub context_stack: Vec<TraversalContext>,
    visited: BitSet<BasicCoverageBlock>,
}

impl TraverseCoverageGraphWithLoops {
    pub fn new(basic_coverage_blocks: &CoverageGraph) -> Self {
        let start_bcb = basic_coverage_blocks.start_node();
        let backedges = find_loop_backedges(basic_coverage_blocks);
        let context_stack =
            vec![TraversalContext { loop_backedges: None, worklist: vec![start_bcb] }];
        // `context_stack` starts with a `TraversalContext` for the main function context (beginning
        // with the `start` BasicCoverageBlock of the function). New worklists are pushed to the top
        // of the stack as loops are entered, and popped off of the stack when a loop's worklist is
        // exhausted.
        let visited = BitSet::new_empty(basic_coverage_blocks.num_nodes());
        Self { backedges, context_stack, visited }
    }

    pub fn next(&mut self, basic_coverage_blocks: &CoverageGraph) -> Option<BasicCoverageBlock> {
        debug!(
            "TraverseCoverageGraphWithLoops::next - context_stack: {:?}",
            self.context_stack.iter().rev().collect::<Vec<_>>()
        );
        while let Some(next_bcb) = {
            // Strip contexts with empty worklists from the top of the stack
            while self.context_stack.last().map_or(false, |context| context.worklist.is_empty()) {
                self.context_stack.pop();
            }
            // Pop the next bcb off of the current context_stack. If none, all BCBs were visited.
            self.context_stack.last_mut().map_or(None, |context| context.worklist.pop())
        } {
            if !self.visited.insert(next_bcb) {
                debug!("Already visited: {:?}", next_bcb);
                continue;
            }
            debug!("Visiting {:?}", next_bcb);
            if self.backedges[next_bcb].len() > 0 {
                debug!("{:?} is a loop header! Start a new TraversalContext...", next_bcb);
                self.context_stack.push(TraversalContext {
                    loop_backedges: Some((self.backedges[next_bcb].clone(), next_bcb)),
                    worklist: Vec::new(),
                });
            }
            self.extend_worklist(basic_coverage_blocks, next_bcb);
            return Some(next_bcb);
        }
        None
    }

    pub fn extend_worklist(
        &mut self,
        basic_coverage_blocks: &CoverageGraph,
        bcb: BasicCoverageBlock,
    ) {
        let successors = &basic_coverage_blocks.successors[bcb];
        debug!("{:?} has {} successors:", bcb, successors.len());
        for &successor in successors {
            if successor == bcb {
                debug!(
                    "{:?} has itself as its own successor. (Note, the compiled code will \
                    generate an infinite loop.)",
                    bcb
                );
                // Don't re-add this successor to the worklist. We are already processing it.
                break;
            }
            for context in self.context_stack.iter_mut().rev() {
                // Add successors of the current BCB to the appropriate context. Successors that
                // stay within a loop are added to the BCBs context worklist. Successors that
                // exit the loop (they are not dominated by the loop header) must be reachable
                // from other BCBs outside the loop, and they will be added to a different
                // worklist.
                //
                // Branching blocks (with more than one successor) must be processed before
                // blocks with only one successor, to prevent unnecessarily complicating
                // `Expression`s by creating a Counter in a `BasicCoverageBlock` that the
                // branching block would have given an `Expression` (or vice versa).
                let (some_successor_to_add, some_loop_header) =
                    if let Some((_, loop_header)) = context.loop_backedges {
                        if basic_coverage_blocks.is_dominated_by(successor, loop_header) {
                            (Some(successor), Some(loop_header))
                        } else {
                            (None, None)
                        }
                    } else {
                        (Some(successor), None)
                    };
                if let Some(successor_to_add) = some_successor_to_add {
                    if basic_coverage_blocks.successors[successor_to_add].len() > 1 {
                        debug!(
                            "{:?} successor is branching. Prioritize it at the beginning of \
                            the {}",
                            successor_to_add,
                            if let Some(loop_header) = some_loop_header {
                                format!("worklist for the loop headed by {:?}", loop_header)
                            } else {
                                String::from("non-loop worklist")
                            },
                        );
                        context.worklist.insert(0, successor_to_add);
                    } else {
                        debug!(
                            "{:?} successor is non-branching. Defer it to the end of the {}",
                            successor_to_add,
                            if let Some(loop_header) = some_loop_header {
                                format!("worklist for the loop headed by {:?}", loop_header)
                            } else {
                                String::from("non-loop worklist")
                            },
                        );
                        context.worklist.push(successor_to_add);
                    }
                    break;
                }
            }
        }
    }

    pub fn is_complete(&self) -> bool {
        self.visited.count() == self.visited.domain_size()
    }

    pub fn unvisited(&self) -> Vec<BasicCoverageBlock> {
        let mut unvisited_set: BitSet<BasicCoverageBlock> =
            BitSet::new_filled(self.visited.domain_size());
        unvisited_set.subtract(&self.visited);
        unvisited_set.iter().collect::<Vec<_>>()
    }
}

pub(super) fn find_loop_backedges(
    basic_coverage_blocks: &CoverageGraph,
) -> IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>> {
    let num_bcbs = basic_coverage_blocks.num_nodes();
    let mut backedges = IndexVec::from_elem_n(Vec::<BasicCoverageBlock>::new(), num_bcbs);

    // Identify loops by their backedges.
    //
    // The computational complexity is bounded by: n(s) x d where `n` is the number of
    // `BasicCoverageBlock` nodes (the simplified/reduced representation of the CFG derived from the
    // MIR); `s` is the average number of successors per node (which is most likely less than 2, and
    // independent of the size of the function, so it can be treated as a constant);
    // and `d` is the average number of dominators per node.
    //
    // The average number of dominators depends on the size and complexity of the function, and
    // nodes near the start of the function's control flow graph typically have less dominators
    // than nodes near the end of the CFG. Without doing a detailed mathematical analysis, I
    // think the resulting complexity has the characteristics of O(n log n).
    //
    // The overall complexity appears to be comparable to many other MIR transform algorithms, and I
    // don't expect that this function is creating a performance hot spot, but if this becomes an
    // issue, there may be ways to optimize the `is_dominated_by` algorithm (as indicated by an
    // existing `FIXME` comment in that code), or possibly ways to optimize it's usage here, perhaps
    // by keeping track of results for visited `BasicCoverageBlock`s if they can be used to short
    // circuit downstream `is_dominated_by` checks.
    //
    // For now, that kind of optimization seems unnecessarily complicated.
    for (bcb, _) in basic_coverage_blocks.iter_enumerated() {
        for &successor in &basic_coverage_blocks.successors[bcb] {
            if basic_coverage_blocks.is_dominated_by(bcb, successor) {
                let loop_header = successor;
                let backedge_from_bcb = bcb;
                debug!(
                    "Found BCB backedge: {:?} -> loop_header: {:?}",
                    backedge_from_bcb, loop_header
                );
                backedges[loop_header].push(backedge_from_bcb);
            }
        }
    }
    backedges
}

pub struct ShortCircuitPreorder<
    'a,
    'tcx,
    F: Fn(&'a mir::Body<'tcx>, &'a TerminatorKind<'tcx>) -> Box<dyn Iterator<Item = BasicBlock> + 'a>,
> {
    body: &'a mir::Body<'tcx>,
    visited: BitSet<BasicBlock>,
    worklist: Vec<BasicBlock>,
    filtered_successors: F,
}

impl<
    'a,
    'tcx,
    F: Fn(&'a mir::Body<'tcx>, &'a TerminatorKind<'tcx>) -> Box<dyn Iterator<Item = BasicBlock> + 'a>,
> ShortCircuitPreorder<'a, 'tcx, F>
{
    pub fn new(
        body: &'a mir::Body<'tcx>,
        filtered_successors: F,
    ) -> ShortCircuitPreorder<'a, 'tcx, F> {
        let worklist = vec![mir::START_BLOCK];

        ShortCircuitPreorder {
            body,
            visited: BitSet::new_empty(body.basic_blocks.len()),
            worklist,
            filtered_successors,
        }
    }
}

impl<
    'a,
    'tcx,
    F: Fn(&'a mir::Body<'tcx>, &'a TerminatorKind<'tcx>) -> Box<dyn Iterator<Item = BasicBlock> + 'a>,
> Iterator for ShortCircuitPreorder<'a, 'tcx, F>
{
    type Item = (BasicBlock, &'a BasicBlockData<'tcx>);

    fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
        while let Some(idx) = self.worklist.pop() {
            if !self.visited.insert(idx) {
                continue;
            }

            let data = &self.body[idx];

            if let Some(ref term) = data.terminator {
                self.worklist.extend((self.filtered_successors)(&self.body, &term.kind));
            }

            return Some((idx, data));
        }

        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let size = self.body.basic_blocks.len() - self.visited.count();
        (size, Some(size))
    }
}