1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
//! Propagates constants for early reporting of statically known
//! assertion failures

use std::cell::Cell;

use rustc_ast::Mutability;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def::DefKind;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::visit::{
    MutVisitor, MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor,
};
use rustc_middle::mir::{
    BasicBlock, BinOp, Body, Constant, ConstantKind, Local, LocalDecl, LocalKind, Location,
    Operand, Place, Rvalue, SourceInfo, Statement, StatementKind, Terminator, TerminatorKind, UnOp,
    RETURN_PLACE,
};
use rustc_middle::ty::layout::{LayoutError, LayoutOf, LayoutOfHelpers, TyAndLayout};
use rustc_middle::ty::subst::{InternalSubsts, Subst};
use rustc_middle::ty::{self, ConstKind, Instance, ParamEnv, Ty, TyCtxt, TypeVisitable};
use rustc_span::{def_id::DefId, Span};
use rustc_target::abi::{self, HasDataLayout, Size, TargetDataLayout};
use rustc_target::spec::abi::Abi as CallAbi;
use rustc_trait_selection::traits;

use crate::MirPass;
use rustc_const_eval::interpret::{
    self, compile_time_machine, AllocId, ConstAllocation, ConstValue, CtfeValidationMode, Frame,
    ImmTy, Immediate, InterpCx, InterpResult, LocalState, LocalValue, MemoryKind, OpTy, PlaceTy,
    Pointer, Scalar, StackPopCleanup, StackPopUnwind,
};

/// The maximum number of bytes that we'll allocate space for a local or the return value.
/// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just
/// Severely regress performance.
const MAX_ALLOC_LIMIT: u64 = 1024;

/// Macro for machine-specific `InterpError` without allocation.
/// (These will never be shown to the user, but they help diagnose ICEs.)
macro_rules! throw_machine_stop_str {
    ($($tt:tt)*) => {{
        // We make a new local type for it. The type itself does not carry any information,
        // but its vtable (for the `MachineStopType` trait) does.
        struct Zst;
        // Printing this type shows the desired string.
        impl std::fmt::Display for Zst {
            fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                write!(f, $($tt)*)
            }
        }
        impl rustc_middle::mir::interpret::MachineStopType for Zst {}
        throw_machine_stop!(Zst)
    }};
}

pub struct ConstProp;

impl<'tcx> MirPass<'tcx> for ConstProp {
    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
        sess.mir_opt_level() >= 1
    }

    #[instrument(skip(self, tcx), level = "debug")]
    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        // will be evaluated by miri and produce its errors there
        if body.source.promoted.is_some() {
            return;
        }

        let def_id = body.source.def_id().expect_local();
        let def_kind = tcx.def_kind(def_id);
        let is_fn_like = def_kind.is_fn_like();
        let is_assoc_const = def_kind == DefKind::AssocConst;

        // Only run const prop on functions, methods, closures and associated constants
        if !is_fn_like && !is_assoc_const {
            // skip anon_const/statics/consts because they'll be evaluated by miri anyway
            trace!("ConstProp skipped for {:?}", def_id);
            return;
        }

        let is_generator = tcx.type_of(def_id.to_def_id()).is_generator();
        // FIXME(welseywiser) const prop doesn't work on generators because of query cycles
        // computing their layout.
        if is_generator {
            trace!("ConstProp skipped for generator {:?}", def_id);
            return;
        }

        // Check if it's even possible to satisfy the 'where' clauses
        // for this item.
        // This branch will never be taken for any normal function.
        // However, it's possible to `#!feature(trivial_bounds)]` to write
        // a function with impossible to satisfy clauses, e.g.:
        // `fn foo() where String: Copy {}`
        //
        // We don't usually need to worry about this kind of case,
        // since we would get a compilation error if the user tried
        // to call it. However, since we can do const propagation
        // even without any calls to the function, we need to make
        // sure that it even makes sense to try to evaluate the body.
        // If there are unsatisfiable where clauses, then all bets are
        // off, and we just give up.
        //
        // We manually filter the predicates, skipping anything that's not
        // "global". We are in a potentially generic context
        // (e.g. we are evaluating a function without substituting generic
        // parameters, so this filtering serves two purposes:
        //
        // 1. We skip evaluating any predicates that we would
        // never be able prove are unsatisfiable (e.g. `<T as Foo>`
        // 2. We avoid trying to normalize predicates involving generic
        // parameters (e.g. `<T as Foo>::MyItem`). This can confuse
        // the normalization code (leading to cycle errors), since
        // it's usually never invoked in this way.
        let predicates = tcx
            .predicates_of(def_id.to_def_id())
            .predicates
            .iter()
            .filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
        if traits::impossible_predicates(
            tcx,
            traits::elaborate_predicates(tcx, predicates).map(|o| o.predicate).collect(),
        ) {
            trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", def_id);
            return;
        }

        trace!("ConstProp starting for {:?}", def_id);

        let dummy_body = &Body::new(
            body.source,
            (*body.basic_blocks).clone(),
            body.source_scopes.clone(),
            body.local_decls.clone(),
            Default::default(),
            body.arg_count,
            Default::default(),
            body.span,
            body.generator_kind(),
            body.tainted_by_errors,
        );

        // FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
        // constants, instead of just checking for const-folding succeeding.
        // That would require a uniform one-def no-mutation analysis
        // and RPO (or recursing when needing the value of a local).
        let mut optimization_finder = ConstPropagator::new(body, dummy_body, tcx);
        optimization_finder.visit_body(body);

        trace!("ConstProp done for {:?}", def_id);
    }
}

pub struct ConstPropMachine<'mir, 'tcx> {
    /// The virtual call stack.
    stack: Vec<Frame<'mir, 'tcx>>,
    /// `OnlyInsideOwnBlock` locals that were written in the current block get erased at the end.
    pub written_only_inside_own_block_locals: FxHashSet<Local>,
    /// Locals that need to be cleared after every block terminates.
    pub only_propagate_inside_block_locals: BitSet<Local>,
    pub can_const_prop: IndexVec<Local, ConstPropMode>,
}

impl ConstPropMachine<'_, '_> {
    pub fn new(
        only_propagate_inside_block_locals: BitSet<Local>,
        can_const_prop: IndexVec<Local, ConstPropMode>,
    ) -> Self {
        Self {
            stack: Vec::new(),
            written_only_inside_own_block_locals: Default::default(),
            only_propagate_inside_block_locals,
            can_const_prop,
        }
    }
}

impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for ConstPropMachine<'mir, 'tcx> {
    compile_time_machine!(<'mir, 'tcx>);
    const PANIC_ON_ALLOC_FAIL: bool = true; // all allocations are small (see `MAX_ALLOC_LIMIT`)

    type MemoryKind = !;

    #[inline(always)]
    fn enforce_alignment(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
        // We do not check for alignment to avoid having to carry an `Align`
        // in `ConstValue::ByRef`.
        false
    }

    #[inline(always)]
    fn enforce_validity(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
        false // for now, we don't enforce validity
    }

    fn load_mir(
        _ecx: &InterpCx<'mir, 'tcx, Self>,
        _instance: ty::InstanceDef<'tcx>,
    ) -> InterpResult<'tcx, &'tcx Body<'tcx>> {
        throw_machine_stop_str!("calling functions isn't supported in ConstProp")
    }

    fn find_mir_or_eval_fn(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _instance: ty::Instance<'tcx>,
        _abi: CallAbi,
        _args: &[OpTy<'tcx>],
        _destination: &PlaceTy<'tcx>,
        _target: Option<BasicBlock>,
        _unwind: StackPopUnwind,
    ) -> InterpResult<'tcx, Option<(&'mir Body<'tcx>, ty::Instance<'tcx>)>> {
        Ok(None)
    }

    fn call_intrinsic(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _instance: ty::Instance<'tcx>,
        _args: &[OpTy<'tcx>],
        _destination: &PlaceTy<'tcx>,
        _target: Option<BasicBlock>,
        _unwind: StackPopUnwind,
    ) -> InterpResult<'tcx> {
        throw_machine_stop_str!("calling intrinsics isn't supported in ConstProp")
    }

    fn assert_panic(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _msg: &rustc_middle::mir::AssertMessage<'tcx>,
        _unwind: Option<rustc_middle::mir::BasicBlock>,
    ) -> InterpResult<'tcx> {
        bug!("panics terminators are not evaluated in ConstProp")
    }

    fn binary_ptr_op(
        _ecx: &InterpCx<'mir, 'tcx, Self>,
        _bin_op: BinOp,
        _left: &ImmTy<'tcx>,
        _right: &ImmTy<'tcx>,
    ) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
        // We can't do this because aliasing of memory can differ between const eval and llvm
        throw_machine_stop_str!("pointer arithmetic or comparisons aren't supported in ConstProp")
    }

    fn access_local_mut<'a>(
        ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
        frame: usize,
        local: Local,
    ) -> InterpResult<'tcx, &'a mut interpret::Operand<Self::Provenance>> {
        if ecx.machine.can_const_prop[local] == ConstPropMode::NoPropagation {
            throw_machine_stop_str!("tried to write to a local that is marked as not propagatable")
        }
        if frame == 0 && ecx.machine.only_propagate_inside_block_locals.contains(local) {
            trace!(
                "mutating local {:?} which is restricted to its block. \
                Will remove it from const-prop after block is finished.",
                local
            );
            ecx.machine.written_only_inside_own_block_locals.insert(local);
        }
        ecx.machine.stack[frame].locals[local].access_mut()
    }

    fn before_access_global(
        _tcx: TyCtxt<'tcx>,
        _machine: &Self,
        _alloc_id: AllocId,
        alloc: ConstAllocation<'tcx, Self::Provenance, Self::AllocExtra>,
        _static_def_id: Option<DefId>,
        is_write: bool,
    ) -> InterpResult<'tcx> {
        if is_write {
            throw_machine_stop_str!("can't write to global");
        }
        // If the static allocation is mutable, then we can't const prop it as its content
        // might be different at runtime.
        if alloc.inner().mutability == Mutability::Mut {
            throw_machine_stop_str!("can't access mutable globals in ConstProp");
        }

        Ok(())
    }

    #[inline(always)]
    fn expose_ptr(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _ptr: Pointer<AllocId>,
    ) -> InterpResult<'tcx> {
        throw_machine_stop_str!("exposing pointers isn't supported in ConstProp")
    }

    #[inline(always)]
    fn init_frame_extra(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        frame: Frame<'mir, 'tcx>,
    ) -> InterpResult<'tcx, Frame<'mir, 'tcx>> {
        Ok(frame)
    }

    #[inline(always)]
    fn stack<'a>(
        ecx: &'a InterpCx<'mir, 'tcx, Self>,
    ) -> &'a [Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>] {
        &ecx.machine.stack
    }

    #[inline(always)]
    fn stack_mut<'a>(
        ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
    ) -> &'a mut Vec<Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>> {
        &mut ecx.machine.stack
    }
}

/// Finds optimization opportunities on the MIR.
struct ConstPropagator<'mir, 'tcx> {
    ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>,
    tcx: TyCtxt<'tcx>,
    param_env: ParamEnv<'tcx>,
    local_decls: &'mir IndexVec<Local, LocalDecl<'tcx>>,
    // Because we have `MutVisitor` we can't obtain the `SourceInfo` from a `Location`. So we store
    // the last known `SourceInfo` here and just keep revisiting it.
    source_info: Option<SourceInfo>,
}

impl<'tcx> LayoutOfHelpers<'tcx> for ConstPropagator<'_, 'tcx> {
    type LayoutOfResult = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;

    #[inline]
    fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> {
        err
    }
}

impl HasDataLayout for ConstPropagator<'_, '_> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.tcx.data_layout
    }
}

impl<'tcx> ty::layout::HasTyCtxt<'tcx> for ConstPropagator<'_, 'tcx> {
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }
}

impl<'tcx> ty::layout::HasParamEnv<'tcx> for ConstPropagator<'_, 'tcx> {
    #[inline]
    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.param_env
    }
}

impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
    fn new(
        body: &Body<'tcx>,
        dummy_body: &'mir Body<'tcx>,
        tcx: TyCtxt<'tcx>,
    ) -> ConstPropagator<'mir, 'tcx> {
        let def_id = body.source.def_id();
        let substs = &InternalSubsts::identity_for_item(tcx, def_id);
        let param_env = tcx.param_env_reveal_all_normalized(def_id);

        let can_const_prop = CanConstProp::check(tcx, param_env, body);
        let mut only_propagate_inside_block_locals = BitSet::new_empty(can_const_prop.len());
        for (l, mode) in can_const_prop.iter_enumerated() {
            if *mode == ConstPropMode::OnlyInsideOwnBlock {
                only_propagate_inside_block_locals.insert(l);
            }
        }
        let mut ecx = InterpCx::new(
            tcx,
            tcx.def_span(def_id),
            param_env,
            ConstPropMachine::new(only_propagate_inside_block_locals, can_const_prop),
        );

        let ret_layout = ecx
            .layout_of(body.bound_return_ty().subst(tcx, substs))
            .ok()
            // Don't bother allocating memory for large values.
            // I don't know how return types can seem to be unsized but this happens in the
            // `type/type-unsatisfiable.rs` test.
            .filter(|ret_layout| {
                !ret_layout.is_unsized() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT)
            })
            .unwrap_or_else(|| ecx.layout_of(tcx.types.unit).unwrap());

        let ret = ecx
            .allocate(ret_layout, MemoryKind::Stack)
            .expect("couldn't perform small allocation")
            .into();

        ecx.push_stack_frame(
            Instance::new(def_id, substs),
            dummy_body,
            &ret,
            StackPopCleanup::Root { cleanup: false },
        )
        .expect("failed to push initial stack frame");

        ConstPropagator {
            ecx,
            tcx,
            param_env,
            local_decls: &dummy_body.local_decls,
            source_info: None,
        }
    }

    fn get_const(&self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
        let op = match self.ecx.eval_place_to_op(place, None) {
            Ok(op) => {
                if matches!(*op, interpret::Operand::Immediate(Immediate::Uninit)) {
                    // Make sure nobody accidentally uses this value.
                    return None;
                }
                op
            }
            Err(e) => {
                trace!("get_const failed: {}", e);
                return None;
            }
        };

        // Try to read the local as an immediate so that if it is representable as a scalar, we can
        // handle it as such, but otherwise, just return the value as is.
        Some(match self.ecx.read_immediate_raw(&op) {
            Ok(Ok(imm)) => imm.into(),
            _ => op,
        })
    }

    /// Remove `local` from the pool of `Locals`. Allows writing to them,
    /// but not reading from them anymore.
    fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) {
        ecx.frame_mut().locals[local] = LocalState {
            value: LocalValue::Live(interpret::Operand::Immediate(interpret::Immediate::Uninit)),
            layout: Cell::new(None),
        };
    }

    fn use_ecx<F, T>(&mut self, f: F) -> Option<T>
    where
        F: FnOnce(&mut Self) -> InterpResult<'tcx, T>,
    {
        match f(self) {
            Ok(val) => Some(val),
            Err(error) => {
                trace!("InterpCx operation failed: {:?}", error);
                // Some errors shouldn't come up because creating them causes
                // an allocation, which we should avoid. When that happens,
                // dedicated error variants should be introduced instead.
                assert!(
                    !error.kind().formatted_string(),
                    "const-prop encountered formatting error: {}",
                    error
                );
                None
            }
        }
    }

    /// Returns the value, if any, of evaluating `c`.
    fn eval_constant(&mut self, c: &Constant<'tcx>) -> Option<OpTy<'tcx>> {
        // FIXME we need to revisit this for #67176
        if c.needs_subst() {
            return None;
        }

        self.ecx.mir_const_to_op(&c.literal, None).ok()
    }

    /// Returns the value, if any, of evaluating `place`.
    fn eval_place(&mut self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
        trace!("eval_place(place={:?})", place);
        self.use_ecx(|this| this.ecx.eval_place_to_op(place, None))
    }

    /// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant`
    /// or `eval_place`, depending on the variant of `Operand` used.
    fn eval_operand(&mut self, op: &Operand<'tcx>) -> Option<OpTy<'tcx>> {
        match *op {
            Operand::Constant(ref c) => self.eval_constant(c),
            Operand::Move(place) | Operand::Copy(place) => self.eval_place(place),
        }
    }

    fn check_unary_op(&mut self, op: UnOp, arg: &Operand<'tcx>) -> Option<()> {
        if self.use_ecx(|this| {
            let val = this.ecx.read_immediate(&this.ecx.eval_operand(arg, None)?)?;
            let (_res, overflow, _ty) = this.ecx.overflowing_unary_op(op, &val)?;
            Ok(overflow)
        })? {
            // `AssertKind` only has an `OverflowNeg` variant, so make sure that is
            // appropriate to use.
            assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow");
            return None;
        }

        Some(())
    }

    fn check_binary_op(
        &mut self,
        op: BinOp,
        left: &Operand<'tcx>,
        right: &Operand<'tcx>,
    ) -> Option<()> {
        let r = self.use_ecx(|this| this.ecx.read_immediate(&this.ecx.eval_operand(right, None)?));
        let l = self.use_ecx(|this| this.ecx.read_immediate(&this.ecx.eval_operand(left, None)?));
        // Check for exceeding shifts *even if* we cannot evaluate the LHS.
        if op == BinOp::Shr || op == BinOp::Shl {
            let r = r.clone()?;
            // We need the type of the LHS. We cannot use `place_layout` as that is the type
            // of the result, which for checked binops is not the same!
            let left_ty = left.ty(self.local_decls, self.tcx);
            let left_size = self.ecx.layout_of(left_ty).ok()?.size;
            let right_size = r.layout.size;
            let r_bits = r.to_scalar().to_bits(right_size).ok();
            if r_bits.map_or(false, |b| b >= left_size.bits() as u128) {
                return None;
            }
        }

        if let (Some(l), Some(r)) = (&l, &r) {
            // The remaining operators are handled through `overflowing_binary_op`.
            if self.use_ecx(|this| {
                let (_res, overflow, _ty) = this.ecx.overflowing_binary_op(op, l, r)?;
                Ok(overflow)
            })? {
                return None;
            }
        }
        Some(())
    }

    fn propagate_operand(&mut self, operand: &mut Operand<'tcx>) {
        match *operand {
            Operand::Copy(l) | Operand::Move(l) => {
                if let Some(value) = self.get_const(l) && self.should_const_prop(&value) {
                    // FIXME(felix91gr): this code only handles `Scalar` cases.
                    // For now, we're not handling `ScalarPair` cases because
                    // doing so here would require a lot of code duplication.
                    // We should hopefully generalize `Operand` handling into a fn,
                    // and use it to do const-prop here and everywhere else
                    // where it makes sense.
                    if let interpret::Operand::Immediate(interpret::Immediate::Scalar(
                        scalar,
                    )) = *value
                    {
                        *operand = self.operand_from_scalar(
                            scalar,
                            value.layout.ty,
                            self.source_info.unwrap().span,
                        );
                    }
                }
            }
            Operand::Constant(_) => (),
        }
    }

    fn const_prop(&mut self, rvalue: &Rvalue<'tcx>, place: Place<'tcx>) -> Option<()> {
        // Perform any special handling for specific Rvalue types.
        // Generally, checks here fall into one of two categories:
        //   1. Additional checking to provide useful lints to the user
        //        - In this case, we will do some validation and then fall through to the
        //          end of the function which evals the assignment.
        //   2. Working around bugs in other parts of the compiler
        //        - In this case, we'll return `None` from this function to stop evaluation.
        match rvalue {
            // Additional checking: give lints to the user if an overflow would occur.
            // We do this here and not in the `Assert` terminator as that terminator is
            // only sometimes emitted (overflow checks can be disabled), but we want to always
            // lint.
            Rvalue::UnaryOp(op, arg) => {
                trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg);
                self.check_unary_op(*op, arg)?;
            }
            Rvalue::BinaryOp(op, box (left, right)) => {
                trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right);
                self.check_binary_op(*op, left, right)?;
            }
            Rvalue::CheckedBinaryOp(op, box (left, right)) => {
                trace!(
                    "checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})",
                    op,
                    left,
                    right
                );
                self.check_binary_op(*op, left, right)?;
            }

            // Do not try creating references (#67862)
            Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => {
                trace!("skipping AddressOf | Ref for {:?}", place);

                // This may be creating mutable references or immutable references to cells.
                // If that happens, the pointed to value could be mutated via that reference.
                // Since we aren't tracking references, the const propagator loses track of what
                // value the local has right now.
                // Thus, all locals that have their reference taken
                // must not take part in propagation.
                Self::remove_const(&mut self.ecx, place.local);

                return None;
            }
            Rvalue::ThreadLocalRef(def_id) => {
                trace!("skipping ThreadLocalRef({:?})", def_id);

                return None;
            }

            // There's no other checking to do at this time.
            Rvalue::Aggregate(..)
            | Rvalue::Use(..)
            | Rvalue::CopyForDeref(..)
            | Rvalue::Repeat(..)
            | Rvalue::Len(..)
            | Rvalue::Cast(..)
            | Rvalue::ShallowInitBox(..)
            | Rvalue::Discriminant(..)
            | Rvalue::NullaryOp(..) => {}
        }

        // FIXME we need to revisit this for #67176
        if rvalue.needs_subst() {
            return None;
        }
        if !rvalue
            .ty(&self.ecx.frame().body.local_decls, *self.ecx.tcx)
            .is_sized(self.ecx.tcx, self.param_env)
        {
            // the interpreter doesn't support unsized locals (only unsized arguments),
            // but rustc does (in a kinda broken way), so we have to skip them here
            return None;
        }

        if self.tcx.sess.mir_opt_level() >= 4 {
            self.eval_rvalue_with_identities(rvalue, place)
        } else {
            self.use_ecx(|this| this.ecx.eval_rvalue_into_place(rvalue, place))
        }
    }

    // Attempt to use algebraic identities to eliminate constant expressions
    fn eval_rvalue_with_identities(
        &mut self,
        rvalue: &Rvalue<'tcx>,
        place: Place<'tcx>,
    ) -> Option<()> {
        self.use_ecx(|this| match rvalue {
            Rvalue::BinaryOp(op, box (left, right))
            | Rvalue::CheckedBinaryOp(op, box (left, right)) => {
                let l = this.ecx.eval_operand(left, None).and_then(|x| this.ecx.read_immediate(&x));
                let r =
                    this.ecx.eval_operand(right, None).and_then(|x| this.ecx.read_immediate(&x));

                let const_arg = match (l, r) {
                    (Ok(x), Err(_)) | (Err(_), Ok(x)) => x, // exactly one side is known
                    (Err(e), Err(_)) => return Err(e),      // neither side is known
                    (Ok(_), Ok(_)) => return this.ecx.eval_rvalue_into_place(rvalue, place), // both sides are known
                };

                if !matches!(const_arg.layout.abi, abi::Abi::Scalar(..)) {
                    // We cannot handle Scalar Pair stuff.
                    // No point in calling `eval_rvalue_into_place`, since only one side is known
                    throw_machine_stop_str!("cannot optimize this")
                }

                let arg_value = const_arg.to_scalar().to_bits(const_arg.layout.size)?;
                let dest = this.ecx.eval_place(place)?;

                match op {
                    BinOp::BitAnd if arg_value == 0 => this.ecx.write_immediate(*const_arg, &dest),
                    BinOp::BitOr
                        if arg_value == const_arg.layout.size.truncate(u128::MAX)
                            || (const_arg.layout.ty.is_bool() && arg_value == 1) =>
                    {
                        this.ecx.write_immediate(*const_arg, &dest)
                    }
                    BinOp::Mul if const_arg.layout.ty.is_integral() && arg_value == 0 => {
                        if let Rvalue::CheckedBinaryOp(_, _) = rvalue {
                            let val = Immediate::ScalarPair(
                                const_arg.to_scalar().into(),
                                Scalar::from_bool(false).into(),
                            );
                            this.ecx.write_immediate(val, &dest)
                        } else {
                            this.ecx.write_immediate(*const_arg, &dest)
                        }
                    }
                    _ => throw_machine_stop_str!("cannot optimize this"),
                }
            }
            _ => this.ecx.eval_rvalue_into_place(rvalue, place),
        })
    }

    /// Creates a new `Operand::Constant` from a `Scalar` value
    fn operand_from_scalar(&self, scalar: Scalar, ty: Ty<'tcx>, span: Span) -> Operand<'tcx> {
        Operand::Constant(Box::new(Constant {
            span,
            user_ty: None,
            literal: ConstantKind::from_scalar(self.tcx, scalar, ty),
        }))
    }

    fn replace_with_const(
        &mut self,
        rval: &mut Rvalue<'tcx>,
        value: &OpTy<'tcx>,
        source_info: SourceInfo,
    ) {
        if let Rvalue::Use(Operand::Constant(c)) = rval {
            match c.literal {
                ConstantKind::Ty(c) if matches!(c.kind(), ConstKind::Unevaluated(..)) => {}
                _ => {
                    trace!("skipping replace of Rvalue::Use({:?} because it is already a const", c);
                    return;
                }
            }
        }

        trace!("attempting to replace {:?} with {:?}", rval, value);
        if let Err(e) = self.ecx.const_validate_operand(
            value,
            vec![],
            // FIXME: is ref tracking too expensive?
            // FIXME: what is the point of ref tracking if we do not even check the tracked refs?
            &mut interpret::RefTracking::empty(),
            CtfeValidationMode::Regular,
        ) {
            trace!("validation error, attempt failed: {:?}", e);
            return;
        }

        // FIXME> figure out what to do when read_immediate_raw fails
        let imm = self.use_ecx(|this| this.ecx.read_immediate_raw(value));

        if let Some(Ok(imm)) = imm {
            match *imm {
                interpret::Immediate::Scalar(scalar) => {
                    *rval = Rvalue::Use(self.operand_from_scalar(
                        scalar,
                        value.layout.ty,
                        source_info.span,
                    ));
                }
                Immediate::ScalarPair(..) => {
                    // Found a value represented as a pair. For now only do const-prop if the type
                    // of `rvalue` is also a tuple with two scalars.
                    // FIXME: enable the general case stated above ^.
                    let ty = value.layout.ty;
                    // Only do it for tuples
                    if let ty::Tuple(types) = ty.kind() {
                        // Only do it if tuple is also a pair with two scalars
                        if let [ty1, ty2] = types[..] {
                            let alloc = self.use_ecx(|this| {
                                let ty_is_scalar = |ty| {
                                    this.ecx.layout_of(ty).ok().map(|layout| layout.abi.is_scalar())
                                        == Some(true)
                                };
                                if ty_is_scalar(ty1) && ty_is_scalar(ty2) {
                                    let alloc = this
                                        .ecx
                                        .intern_with_temp_alloc(value.layout, |ecx, dest| {
                                            ecx.write_immediate(*imm, dest)
                                        })
                                        .unwrap();
                                    Ok(Some(alloc))
                                } else {
                                    Ok(None)
                                }
                            });

                            if let Some(Some(alloc)) = alloc {
                                // Assign entire constant in a single statement.
                                // We can't use aggregates, as we run after the aggregate-lowering `MirPhase`.
                                let const_val = ConstValue::ByRef { alloc, offset: Size::ZERO };
                                let literal = ConstantKind::Val(const_val, ty);
                                *rval = Rvalue::Use(Operand::Constant(Box::new(Constant {
                                    span: source_info.span,
                                    user_ty: None,
                                    literal,
                                })));
                            }
                        }
                    }
                }
                // Scalars or scalar pairs that contain undef values are assumed to not have
                // successfully evaluated and are thus not propagated.
                _ => {}
            }
        }
    }

    /// Returns `true` if and only if this `op` should be const-propagated into.
    fn should_const_prop(&mut self, op: &OpTy<'tcx>) -> bool {
        if !self.tcx.consider_optimizing(|| format!("ConstantPropagation - OpTy: {:?}", op)) {
            return false;
        }

        match **op {
            interpret::Operand::Immediate(Immediate::Scalar(s)) => s.try_to_int().is_ok(),
            interpret::Operand::Immediate(Immediate::ScalarPair(l, r)) => {
                l.try_to_int().is_ok() && r.try_to_int().is_ok()
            }
            _ => false,
        }
    }
}

/// The mode that `ConstProp` is allowed to run in for a given `Local`.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ConstPropMode {
    /// The `Local` can be propagated into and reads of this `Local` can also be propagated.
    FullConstProp,
    /// The `Local` can only be propagated into and from its own block.
    OnlyInsideOwnBlock,
    /// The `Local` can be propagated into but reads cannot be propagated.
    OnlyPropagateInto,
    /// The `Local` cannot be part of propagation at all. Any statement
    /// referencing it either for reading or writing will not get propagated.
    NoPropagation,
}

pub struct CanConstProp {
    can_const_prop: IndexVec<Local, ConstPropMode>,
    // False at the beginning. Once set, no more assignments are allowed to that local.
    found_assignment: BitSet<Local>,
    // Cache of locals' information
    local_kinds: IndexVec<Local, LocalKind>,
}

impl CanConstProp {
    /// Returns true if `local` can be propagated
    pub fn check<'tcx>(
        tcx: TyCtxt<'tcx>,
        param_env: ParamEnv<'tcx>,
        body: &Body<'tcx>,
    ) -> IndexVec<Local, ConstPropMode> {
        let mut cpv = CanConstProp {
            can_const_prop: IndexVec::from_elem(ConstPropMode::FullConstProp, &body.local_decls),
            found_assignment: BitSet::new_empty(body.local_decls.len()),
            local_kinds: IndexVec::from_fn_n(
                |local| body.local_kind(local),
                body.local_decls.len(),
            ),
        };
        for (local, val) in cpv.can_const_prop.iter_enumerated_mut() {
            let ty = body.local_decls[local].ty;
            match tcx.layout_of(param_env.and(ty)) {
                Ok(layout) if layout.size < Size::from_bytes(MAX_ALLOC_LIMIT) => {}
                // Either the layout fails to compute, then we can't use this local anyway
                // or the local is too large, then we don't want to.
                _ => {
                    *val = ConstPropMode::NoPropagation;
                    continue;
                }
            }
            // Cannot use args at all
            // Cannot use locals because if x < y { y - x } else { x - y } would
            //        lint for x != y
            // FIXME(oli-obk): lint variables until they are used in a condition
            // FIXME(oli-obk): lint if return value is constant
            if cpv.local_kinds[local] == LocalKind::Arg {
                *val = ConstPropMode::OnlyPropagateInto;
                trace!(
                    "local {:?} can't be const propagated because it's a function argument",
                    local
                );
            } else if cpv.local_kinds[local] == LocalKind::Var {
                *val = ConstPropMode::OnlyInsideOwnBlock;
                trace!(
                    "local {:?} will only be propagated inside its block, because it's a user variable",
                    local
                );
            }
        }
        cpv.visit_body(&body);
        cpv.can_const_prop
    }
}

impl Visitor<'_> for CanConstProp {
    fn visit_local(&mut self, local: Local, context: PlaceContext, _: Location) {
        use rustc_middle::mir::visit::PlaceContext::*;
        match context {
            // Projections are fine, because `&mut foo.x` will be caught by
            // `MutatingUseContext::Borrow` elsewhere.
            MutatingUse(MutatingUseContext::Projection)
            // These are just stores, where the storing is not propagatable, but there may be later
            // mutations of the same local via `Store`
            | MutatingUse(MutatingUseContext::Call)
            | MutatingUse(MutatingUseContext::AsmOutput)
            | MutatingUse(MutatingUseContext::Deinit)
            // Actual store that can possibly even propagate a value
            | MutatingUse(MutatingUseContext::Store)
            | MutatingUse(MutatingUseContext::SetDiscriminant) => {
                if !self.found_assignment.insert(local) {
                    match &mut self.can_const_prop[local] {
                        // If the local can only get propagated in its own block, then we don't have
                        // to worry about multiple assignments, as we'll nuke the const state at the
                        // end of the block anyway, and inside the block we overwrite previous
                        // states as applicable.
                        ConstPropMode::OnlyInsideOwnBlock => {}
                        ConstPropMode::NoPropagation => {}
                        ConstPropMode::OnlyPropagateInto => {}
                        other @ ConstPropMode::FullConstProp => {
                            trace!(
                                "local {:?} can't be propagated because of multiple assignments. Previous state: {:?}",
                                local, other,
                            );
                            *other = ConstPropMode::OnlyInsideOwnBlock;
                        }
                    }
                }
            }
            // Reading constants is allowed an arbitrary number of times
            NonMutatingUse(NonMutatingUseContext::Copy)
            | NonMutatingUse(NonMutatingUseContext::Move)
            | NonMutatingUse(NonMutatingUseContext::Inspect)
            | NonMutatingUse(NonMutatingUseContext::Projection)
            | NonUse(_) => {}

            // These could be propagated with a smarter analysis or just some careful thinking about
            // whether they'd be fine right now.
            MutatingUse(MutatingUseContext::Yield)
            | MutatingUse(MutatingUseContext::Drop)
            | MutatingUse(MutatingUseContext::Retag)
            // These can't ever be propagated under any scheme, as we can't reason about indirect
            // mutation.
            | NonMutatingUse(NonMutatingUseContext::SharedBorrow)
            | NonMutatingUse(NonMutatingUseContext::ShallowBorrow)
            | NonMutatingUse(NonMutatingUseContext::UniqueBorrow)
            | NonMutatingUse(NonMutatingUseContext::AddressOf)
            | MutatingUse(MutatingUseContext::Borrow)
            | MutatingUse(MutatingUseContext::AddressOf) => {
                trace!("local {:?} can't be propagaged because it's used: {:?}", local, context);
                self.can_const_prop[local] = ConstPropMode::NoPropagation;
            }
        }
    }
}

impl<'tcx> MutVisitor<'tcx> for ConstPropagator<'_, 'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_body(&mut self, body: &mut Body<'tcx>) {
        for (bb, data) in body.basic_blocks.as_mut_preserves_cfg().iter_enumerated_mut() {
            self.visit_basic_block_data(bb, data);
        }
    }

    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
        self.super_operand(operand, location);

        // Only const prop copies and moves on `mir_opt_level=3` as doing so
        // currently slightly increases compile time in some cases.
        if self.tcx.sess.mir_opt_level() >= 3 {
            self.propagate_operand(operand)
        }
    }

    fn visit_constant(&mut self, constant: &mut Constant<'tcx>, location: Location) {
        trace!("visit_constant: {:?}", constant);
        self.super_constant(constant, location);
        self.eval_constant(constant);
    }

    fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
        trace!("visit_statement: {:?}", statement);
        let source_info = statement.source_info;
        self.source_info = Some(source_info);
        if let StatementKind::Assign(box (place, ref mut rval)) = statement.kind {
            let can_const_prop = self.ecx.machine.can_const_prop[place.local];
            if let Some(()) = self.const_prop(rval, place) {
                // This will return None if the above `const_prop` invocation only "wrote" a
                // type whose creation requires no write. E.g. a generator whose initial state
                // consists solely of uninitialized memory (so it doesn't capture any locals).
                if let Some(ref value) = self.get_const(place) && self.should_const_prop(value) {
                    trace!("replacing {:?} with {:?}", rval, value);
                    self.replace_with_const(rval, value, source_info);
                    if can_const_prop == ConstPropMode::FullConstProp
                        || can_const_prop == ConstPropMode::OnlyInsideOwnBlock
                    {
                        trace!("propagated into {:?}", place);
                    }
                }
                match can_const_prop {
                    ConstPropMode::OnlyInsideOwnBlock => {
                        trace!(
                            "found local restricted to its block. \
                                Will remove it from const-prop after block is finished. Local: {:?}",
                            place.local
                        );
                    }
                    ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
                        trace!("can't propagate into {:?}", place);
                        if place.local != RETURN_PLACE {
                            Self::remove_const(&mut self.ecx, place.local);
                        }
                    }
                    ConstPropMode::FullConstProp => {}
                }
            } else {
                // Const prop failed, so erase the destination, ensuring that whatever happens
                // from here on, does not know about the previous value.
                // This is important in case we have
                // ```rust
                // let mut x = 42;
                // x = SOME_MUTABLE_STATIC;
                // // x must now be uninit
                // ```
                // FIXME: we overzealously erase the entire local, because that's easier to
                // implement.
                trace!(
                    "propagation into {:?} failed.
                        Nuking the entire site from orbit, it's the only way to be sure",
                    place,
                );
                Self::remove_const(&mut self.ecx, place.local);
            }
        } else {
            match statement.kind {
                StatementKind::SetDiscriminant { ref place, .. } => {
                    match self.ecx.machine.can_const_prop[place.local] {
                        ConstPropMode::FullConstProp | ConstPropMode::OnlyInsideOwnBlock => {
                            if self.use_ecx(|this| this.ecx.statement(statement)).is_some() {
                                trace!("propped discriminant into {:?}", place);
                            } else {
                                Self::remove_const(&mut self.ecx, place.local);
                            }
                        }
                        ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
                            Self::remove_const(&mut self.ecx, place.local);
                        }
                    }
                }
                StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
                    let frame = self.ecx.frame_mut();
                    frame.locals[local].value =
                        if let StatementKind::StorageLive(_) = statement.kind {
                            LocalValue::Live(interpret::Operand::Immediate(
                                interpret::Immediate::Uninit,
                            ))
                        } else {
                            LocalValue::Dead
                        };
                }
                _ => {}
            }
        }

        self.super_statement(statement, location);
    }

    fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
        let source_info = terminator.source_info;
        self.source_info = Some(source_info);
        self.super_terminator(terminator, location);
        match &mut terminator.kind {
            TerminatorKind::Assert { expected, ref mut cond, .. } => {
                if let Some(ref value) = self.eval_operand(&cond) {
                    trace!("assertion on {:?} should be {:?}", value, expected);
                    let expected = Scalar::from_bool(*expected);
                    let Ok(value_const) = self.ecx.read_scalar(&value) else {
                        // FIXME should be used use_ecx rather than a local match... but we have
                        // quite a few of these read_scalar/read_immediate that need fixing.
                        return
                    };
                    if expected != value_const {
                        // Poison all places this operand references so that further code
                        // doesn't use the invalid value
                        match cond {
                            Operand::Move(ref place) | Operand::Copy(ref place) => {
                                Self::remove_const(&mut self.ecx, place.local);
                            }
                            Operand::Constant(_) => {}
                        }
                    } else {
                        if self.should_const_prop(value) {
                            *cond = self.operand_from_scalar(
                                value_const,
                                self.tcx.types.bool,
                                source_info.span,
                            );
                        }
                    }
                }
            }
            TerminatorKind::SwitchInt { ref mut discr, .. } => {
                // FIXME: This is currently redundant with `visit_operand`, but sadly
                // always visiting operands currently causes a perf regression in LLVM codegen, so
                // `visit_operand` currently only runs for propagates places for `mir_opt_level=4`.
                self.propagate_operand(discr)
            }
            // None of these have Operands to const-propagate.
            TerminatorKind::Goto { .. }
            | TerminatorKind::Resume
            | TerminatorKind::Abort
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::Drop { .. }
            | TerminatorKind::DropAndReplace { .. }
            | TerminatorKind::Yield { .. }
            | TerminatorKind::GeneratorDrop
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. }
            | TerminatorKind::InlineAsm { .. } => {}
            // Every argument in our function calls have already been propagated in `visit_operand`.
            //
            // NOTE: because LLVM codegen gives slight performance regressions with it, so this is
            // gated on `mir_opt_level=3`.
            TerminatorKind::Call { .. } => {}
        }

        // We remove all Locals which are restricted in propagation to their containing blocks and
        // which were modified in the current block.
        // Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`.
        let mut locals = std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals);
        for &local in locals.iter() {
            Self::remove_const(&mut self.ecx, local);
        }
        locals.clear();
        // Put it back so we reuse the heap of the storage
        self.ecx.machine.written_only_inside_own_block_locals = locals;
        if cfg!(debug_assertions) {
            // Ensure we are correctly erasing locals with the non-debug-assert logic.
            for local in self.ecx.machine.only_propagate_inside_block_locals.iter() {
                assert!(
                    self.get_const(local.into()).is_none()
                        || self
                            .layout_of(self.local_decls[local].ty)
                            .map_or(true, |layout| layout.is_zst())
                )
            }
        }
    }
}