1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use crate::mir::{GeneratorLayout, GeneratorSavedLocal};
use crate::ty::normalize_erasing_regions::NormalizationError;
use crate::ty::subst::Subst;
use crate::ty::{
    self, layout_sanity_check::sanity_check_layout, subst::SubstsRef, EarlyBinder, ReprOptions, Ty,
    TyCtxt, TypeVisitable,
};
use rustc_ast as ast;
use rustc_attr as attr;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::{Idx, IndexVec};
use rustc_session::{config::OptLevel, DataTypeKind, FieldInfo, SizeKind, VariantInfo};
use rustc_span::symbol::Symbol;
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::call::{
    ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind,
};
use rustc_target::abi::*;
use rustc_target::spec::{abi::Abi as SpecAbi, HasTargetSpec, PanicStrategy, Target};

use std::cmp::{self, Ordering};
use std::fmt;
use std::iter;
use std::num::NonZeroUsize;
use std::ops::Bound;

use rand::{seq::SliceRandom, SeedableRng};
use rand_xoshiro::Xoshiro128StarStar;

pub fn provide(providers: &mut ty::query::Providers) {
    *providers =
        ty::query::Providers { layout_of, fn_abi_of_fn_ptr, fn_abi_of_instance, ..*providers };
}

pub trait IntegerExt {
    fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx>;
    fn from_attr<C: HasDataLayout>(cx: &C, ity: attr::IntType) -> Integer;
    fn from_int_ty<C: HasDataLayout>(cx: &C, ity: ty::IntTy) -> Integer;
    fn from_uint_ty<C: HasDataLayout>(cx: &C, uty: ty::UintTy) -> Integer;
    fn repr_discr<'tcx>(
        tcx: TyCtxt<'tcx>,
        ty: Ty<'tcx>,
        repr: &ReprOptions,
        min: i128,
        max: i128,
    ) -> (Integer, bool);
}

impl IntegerExt for Integer {
    #[inline]
    fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx> {
        match (*self, signed) {
            (I8, false) => tcx.types.u8,
            (I16, false) => tcx.types.u16,
            (I32, false) => tcx.types.u32,
            (I64, false) => tcx.types.u64,
            (I128, false) => tcx.types.u128,
            (I8, true) => tcx.types.i8,
            (I16, true) => tcx.types.i16,
            (I32, true) => tcx.types.i32,
            (I64, true) => tcx.types.i64,
            (I128, true) => tcx.types.i128,
        }
    }

    /// Gets the Integer type from an attr::IntType.
    fn from_attr<C: HasDataLayout>(cx: &C, ity: attr::IntType) -> Integer {
        let dl = cx.data_layout();

        match ity {
            attr::SignedInt(ast::IntTy::I8) | attr::UnsignedInt(ast::UintTy::U8) => I8,
            attr::SignedInt(ast::IntTy::I16) | attr::UnsignedInt(ast::UintTy::U16) => I16,
            attr::SignedInt(ast::IntTy::I32) | attr::UnsignedInt(ast::UintTy::U32) => I32,
            attr::SignedInt(ast::IntTy::I64) | attr::UnsignedInt(ast::UintTy::U64) => I64,
            attr::SignedInt(ast::IntTy::I128) | attr::UnsignedInt(ast::UintTy::U128) => I128,
            attr::SignedInt(ast::IntTy::Isize) | attr::UnsignedInt(ast::UintTy::Usize) => {
                dl.ptr_sized_integer()
            }
        }
    }

    fn from_int_ty<C: HasDataLayout>(cx: &C, ity: ty::IntTy) -> Integer {
        match ity {
            ty::IntTy::I8 => I8,
            ty::IntTy::I16 => I16,
            ty::IntTy::I32 => I32,
            ty::IntTy::I64 => I64,
            ty::IntTy::I128 => I128,
            ty::IntTy::Isize => cx.data_layout().ptr_sized_integer(),
        }
    }
    fn from_uint_ty<C: HasDataLayout>(cx: &C, ity: ty::UintTy) -> Integer {
        match ity {
            ty::UintTy::U8 => I8,
            ty::UintTy::U16 => I16,
            ty::UintTy::U32 => I32,
            ty::UintTy::U64 => I64,
            ty::UintTy::U128 => I128,
            ty::UintTy::Usize => cx.data_layout().ptr_sized_integer(),
        }
    }

    /// Finds the appropriate Integer type and signedness for the given
    /// signed discriminant range and `#[repr]` attribute.
    /// N.B.: `u128` values above `i128::MAX` will be treated as signed, but
    /// that shouldn't affect anything, other than maybe debuginfo.
    fn repr_discr<'tcx>(
        tcx: TyCtxt<'tcx>,
        ty: Ty<'tcx>,
        repr: &ReprOptions,
        min: i128,
        max: i128,
    ) -> (Integer, bool) {
        // Theoretically, negative values could be larger in unsigned representation
        // than the unsigned representation of the signed minimum. However, if there
        // are any negative values, the only valid unsigned representation is u128
        // which can fit all i128 values, so the result remains unaffected.
        let unsigned_fit = Integer::fit_unsigned(cmp::max(min as u128, max as u128));
        let signed_fit = cmp::max(Integer::fit_signed(min), Integer::fit_signed(max));

        if let Some(ity) = repr.int {
            let discr = Integer::from_attr(&tcx, ity);
            let fit = if ity.is_signed() { signed_fit } else { unsigned_fit };
            if discr < fit {
                bug!(
                    "Integer::repr_discr: `#[repr]` hint too small for \
                      discriminant range of enum `{}",
                    ty
                )
            }
            return (discr, ity.is_signed());
        }

        let at_least = if repr.c() {
            // This is usually I32, however it can be different on some platforms,
            // notably hexagon and arm-none/thumb-none
            tcx.data_layout().c_enum_min_size
        } else {
            // repr(Rust) enums try to be as small as possible
            I8
        };

        // If there are no negative values, we can use the unsigned fit.
        if min >= 0 {
            (cmp::max(unsigned_fit, at_least), false)
        } else {
            (cmp::max(signed_fit, at_least), true)
        }
    }
}

pub trait PrimitiveExt {
    fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
    fn to_int_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
}

impl PrimitiveExt for Primitive {
    #[inline]
    fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match *self {
            Int(i, signed) => i.to_ty(tcx, signed),
            F32 => tcx.types.f32,
            F64 => tcx.types.f64,
            Pointer => tcx.mk_mut_ptr(tcx.mk_unit()),
        }
    }

    /// Return an *integer* type matching this primitive.
    /// Useful in particular when dealing with enum discriminants.
    #[inline]
    fn to_int_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match *self {
            Int(i, signed) => i.to_ty(tcx, signed),
            Pointer => tcx.types.usize,
            F32 | F64 => bug!("floats do not have an int type"),
        }
    }
}

/// The first half of a fat pointer.
///
/// - For a trait object, this is the address of the box.
/// - For a slice, this is the base address.
pub const FAT_PTR_ADDR: usize = 0;

/// The second half of a fat pointer.
///
/// - For a trait object, this is the address of the vtable.
/// - For a slice, this is the length.
pub const FAT_PTR_EXTRA: usize = 1;

/// The maximum supported number of lanes in a SIMD vector.
///
/// This value is selected based on backend support:
/// * LLVM does not appear to have a vector width limit.
/// * Cranelift stores the base-2 log of the lane count in a 4 bit integer.
pub const MAX_SIMD_LANES: u64 = 1 << 0xF;

#[derive(Copy, Clone, Debug, HashStable, TyEncodable, TyDecodable)]
pub enum LayoutError<'tcx> {
    Unknown(Ty<'tcx>),
    SizeOverflow(Ty<'tcx>),
    NormalizationFailure(Ty<'tcx>, NormalizationError<'tcx>),
}

impl<'tcx> fmt::Display for LayoutError<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            LayoutError::Unknown(ty) => write!(f, "the type `{}` has an unknown layout", ty),
            LayoutError::SizeOverflow(ty) => {
                write!(f, "values of the type `{}` are too big for the current architecture", ty)
            }
            LayoutError::NormalizationFailure(t, e) => write!(
                f,
                "unable to determine layout for `{}` because `{}` cannot be normalized",
                t,
                e.get_type_for_failure()
            ),
        }
    }
}

#[instrument(skip(tcx, query), level = "debug")]
fn layout_of<'tcx>(
    tcx: TyCtxt<'tcx>,
    query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> {
    let (param_env, ty) = query.into_parts();
    debug!(?ty);

    let param_env = param_env.with_reveal_all_normalized(tcx);
    let unnormalized_ty = ty;

    // FIXME: We might want to have two different versions of `layout_of`:
    // One that can be called after typecheck has completed and can use
    // `normalize_erasing_regions` here and another one that can be called
    // before typecheck has completed and uses `try_normalize_erasing_regions`.
    let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
        Ok(t) => t,
        Err(normalization_error) => {
            return Err(LayoutError::NormalizationFailure(ty, normalization_error));
        }
    };

    if ty != unnormalized_ty {
        // Ensure this layout is also cached for the normalized type.
        return tcx.layout_of(param_env.and(ty));
    }

    let cx = LayoutCx { tcx, param_env };

    let layout = cx.layout_of_uncached(ty)?;
    let layout = TyAndLayout { ty, layout };

    cx.record_layout_for_printing(layout);

    sanity_check_layout(&cx, &layout);

    Ok(layout)
}

#[derive(Clone, Copy)]
pub struct LayoutCx<'tcx, C> {
    pub tcx: C,
    pub param_env: ty::ParamEnv<'tcx>,
}

#[derive(Copy, Clone, Debug)]
enum StructKind {
    /// A tuple, closure, or univariant which cannot be coerced to unsized.
    AlwaysSized,
    /// A univariant, the last field of which may be coerced to unsized.
    MaybeUnsized,
    /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag).
    Prefixed(Size, Align),
}

// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`.
// This is used to go between `memory_index` (source field order to memory order)
// and `inverse_memory_index` (memory order to source field order).
// See also `FieldsShape::Arbitrary::memory_index` for more details.
// FIXME(eddyb) build a better abstraction for permutations, if possible.
fn invert_mapping(map: &[u32]) -> Vec<u32> {
    let mut inverse = vec![0; map.len()];
    for i in 0..map.len() {
        inverse[map[i] as usize] = i as u32;
    }
    inverse
}

impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
    fn scalar_pair(&self, a: Scalar, b: Scalar) -> LayoutS<'tcx> {
        let dl = self.data_layout();
        let b_align = b.align(dl);
        let align = a.align(dl).max(b_align).max(dl.aggregate_align);
        let b_offset = a.size(dl).align_to(b_align.abi);
        let size = (b_offset + b.size(dl)).align_to(align.abi);

        // HACK(nox): We iter on `b` and then `a` because `max_by_key`
        // returns the last maximum.
        let largest_niche = Niche::from_scalar(dl, b_offset, b)
            .into_iter()
            .chain(Niche::from_scalar(dl, Size::ZERO, a))
            .max_by_key(|niche| niche.available(dl));

        LayoutS {
            variants: Variants::Single { index: VariantIdx::new(0) },
            fields: FieldsShape::Arbitrary {
                offsets: vec![Size::ZERO, b_offset],
                memory_index: vec![0, 1],
            },
            abi: Abi::ScalarPair(a, b),
            largest_niche,
            align,
            size,
        }
    }

    fn univariant_uninterned(
        &self,
        ty: Ty<'tcx>,
        fields: &[TyAndLayout<'_>],
        repr: &ReprOptions,
        kind: StructKind,
    ) -> Result<LayoutS<'tcx>, LayoutError<'tcx>> {
        let dl = self.data_layout();
        let pack = repr.pack;
        if pack.is_some() && repr.align.is_some() {
            self.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
            return Err(LayoutError::Unknown(ty));
        }

        let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align };

        let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect();

        let optimize = !repr.inhibit_struct_field_reordering_opt();
        if optimize {
            let end =
                if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() };
            let optimizing = &mut inverse_memory_index[..end];
            let field_align = |f: &TyAndLayout<'_>| {
                if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi }
            };

            // If `-Z randomize-layout` was enabled for the type definition we can shuffle
            // the field ordering to try and catch some code making assumptions about layouts
            // we don't guarantee
            if repr.can_randomize_type_layout() {
                // `ReprOptions.layout_seed` is a deterministic seed that we can use to
                // randomize field ordering with
                let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed);

                // Shuffle the ordering of the fields
                optimizing.shuffle(&mut rng);

            // Otherwise we just leave things alone and actually optimize the type's fields
            } else {
                match kind {
                    StructKind::AlwaysSized | StructKind::MaybeUnsized => {
                        optimizing.sort_by_key(|&x| {
                            // Place ZSTs first to avoid "interesting offsets",
                            // especially with only one or two non-ZST fields.
                            let f = &fields[x as usize];
                            (!f.is_zst(), cmp::Reverse(field_align(f)))
                        });
                    }

                    StructKind::Prefixed(..) => {
                        // Sort in ascending alignment so that the layout stays optimal
                        // regardless of the prefix
                        optimizing.sort_by_key(|&x| field_align(&fields[x as usize]));
                    }
                }

                // FIXME(Kixiron): We can always shuffle fields within a given alignment class
                //                 regardless of the status of `-Z randomize-layout`
            }
        }

        // inverse_memory_index holds field indices by increasing memory offset.
        // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
        // We now write field offsets to the corresponding offset slot;
        // field 5 with offset 0 puts 0 in offsets[5].
        // At the bottom of this function, we invert `inverse_memory_index` to
        // produce `memory_index` (see `invert_mapping`).

        let mut sized = true;
        let mut offsets = vec![Size::ZERO; fields.len()];
        let mut offset = Size::ZERO;
        let mut largest_niche = None;
        let mut largest_niche_available = 0;

        if let StructKind::Prefixed(prefix_size, prefix_align) = kind {
            let prefix_align =
                if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align };
            align = align.max(AbiAndPrefAlign::new(prefix_align));
            offset = prefix_size.align_to(prefix_align);
        }

        for &i in &inverse_memory_index {
            let field = fields[i as usize];
            if !sized {
                self.tcx.sess.delay_span_bug(
                    DUMMY_SP,
                    &format!(
                        "univariant: field #{} of `{}` comes after unsized field",
                        offsets.len(),
                        ty
                    ),
                );
            }

            if field.is_unsized() {
                sized = false;
            }

            // Invariant: offset < dl.obj_size_bound() <= 1<<61
            let field_align = if let Some(pack) = pack {
                field.align.min(AbiAndPrefAlign::new(pack))
            } else {
                field.align
            };
            offset = offset.align_to(field_align.abi);
            align = align.max(field_align);

            debug!("univariant offset: {:?} field: {:#?}", offset, field);
            offsets[i as usize] = offset;

            if let Some(mut niche) = field.largest_niche {
                let available = niche.available(dl);
                if available > largest_niche_available {
                    largest_niche_available = available;
                    niche.offset += offset;
                    largest_niche = Some(niche);
                }
            }

            offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?;
        }

        if let Some(repr_align) = repr.align {
            align = align.max(AbiAndPrefAlign::new(repr_align));
        }

        debug!("univariant min_size: {:?}", offset);
        let min_size = offset;

        // As stated above, inverse_memory_index holds field indices by increasing offset.
        // This makes it an already-sorted view of the offsets vec.
        // To invert it, consider:
        // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
        // Field 5 would be the first element, so memory_index is i:
        // Note: if we didn't optimize, it's already right.

        let memory_index =
            if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index };

        let size = min_size.align_to(align.abi);
        let mut abi = Abi::Aggregate { sized };

        // Unpack newtype ABIs and find scalar pairs.
        if sized && size.bytes() > 0 {
            // All other fields must be ZSTs.
            let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst());

            match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) {
                // We have exactly one non-ZST field.
                (Some((i, field)), None, None) => {
                    // Field fills the struct and it has a scalar or scalar pair ABI.
                    if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size
                    {
                        match field.abi {
                            // For plain scalars, or vectors of them, we can't unpack
                            // newtypes for `#[repr(C)]`, as that affects C ABIs.
                            Abi::Scalar(_) | Abi::Vector { .. } if optimize => {
                                abi = field.abi;
                            }
                            // But scalar pairs are Rust-specific and get
                            // treated as aggregates by C ABIs anyway.
                            Abi::ScalarPair(..) => {
                                abi = field.abi;
                            }
                            _ => {}
                        }
                    }
                }

                // Two non-ZST fields, and they're both scalars.
                (Some((i, a)), Some((j, b)), None) => {
                    match (a.abi, b.abi) {
                        (Abi::Scalar(a), Abi::Scalar(b)) => {
                            // Order by the memory placement, not source order.
                            let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
                                ((i, a), (j, b))
                            } else {
                                ((j, b), (i, a))
                            };
                            let pair = self.scalar_pair(a, b);
                            let pair_offsets = match pair.fields {
                                FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
                                    assert_eq!(memory_index, &[0, 1]);
                                    offsets
                                }
                                _ => bug!(),
                            };
                            if offsets[i] == pair_offsets[0]
                                && offsets[j] == pair_offsets[1]
                                && align == pair.align
                                && size == pair.size
                            {
                                // We can use `ScalarPair` only when it matches our
                                // already computed layout (including `#[repr(C)]`).
                                abi = pair.abi;
                            }
                        }
                        _ => {}
                    }
                }

                _ => {}
            }
        }

        if fields.iter().any(|f| f.abi.is_uninhabited()) {
            abi = Abi::Uninhabited;
        }

        Ok(LayoutS {
            variants: Variants::Single { index: VariantIdx::new(0) },
            fields: FieldsShape::Arbitrary { offsets, memory_index },
            abi,
            largest_niche,
            align,
            size,
        })
    }

    fn layout_of_uncached(&self, ty: Ty<'tcx>) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
        let tcx = self.tcx;
        let param_env = self.param_env;
        let dl = self.data_layout();
        let scalar_unit = |value: Primitive| {
            let size = value.size(dl);
            assert!(size.bits() <= 128);
            Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
        };
        let scalar =
            |value: Primitive| tcx.intern_layout(LayoutS::scalar(self, scalar_unit(value)));

        let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| {
            Ok(tcx.intern_layout(self.univariant_uninterned(ty, fields, repr, kind)?))
        };
        debug_assert!(!ty.has_infer_types_or_consts());

        Ok(match *ty.kind() {
            // Basic scalars.
            ty::Bool => tcx.intern_layout(LayoutS::scalar(
                self,
                Scalar::Initialized {
                    value: Int(I8, false),
                    valid_range: WrappingRange { start: 0, end: 1 },
                },
            )),
            ty::Char => tcx.intern_layout(LayoutS::scalar(
                self,
                Scalar::Initialized {
                    value: Int(I32, false),
                    valid_range: WrappingRange { start: 0, end: 0x10FFFF },
                },
            )),
            ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
            ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
            ty::Float(fty) => scalar(match fty {
                ty::FloatTy::F32 => F32,
                ty::FloatTy::F64 => F64,
            }),
            ty::FnPtr(_) => {
                let mut ptr = scalar_unit(Pointer);
                ptr.valid_range_mut().start = 1;
                tcx.intern_layout(LayoutS::scalar(self, ptr))
            }

            // The never type.
            ty::Never => tcx.intern_layout(LayoutS {
                variants: Variants::Single { index: VariantIdx::new(0) },
                fields: FieldsShape::Primitive,
                abi: Abi::Uninhabited,
                largest_niche: None,
                align: dl.i8_align,
                size: Size::ZERO,
            }),

            // Potentially-wide pointers.
            ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
                let mut data_ptr = scalar_unit(Pointer);
                if !ty.is_unsafe_ptr() {
                    data_ptr.valid_range_mut().start = 1;
                }

                let pointee = tcx.normalize_erasing_regions(param_env, pointee);
                if pointee.is_sized(tcx.at(DUMMY_SP), param_env) {
                    return Ok(tcx.intern_layout(LayoutS::scalar(self, data_ptr)));
                }

                let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
                let metadata = match unsized_part.kind() {
                    ty::Foreign(..) => {
                        return Ok(tcx.intern_layout(LayoutS::scalar(self, data_ptr)));
                    }
                    ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
                    ty::Dynamic(..) => {
                        let mut vtable = scalar_unit(Pointer);
                        vtable.valid_range_mut().start = 1;
                        vtable
                    }
                    _ => return Err(LayoutError::Unknown(unsized_part)),
                };

                // Effectively a (ptr, meta) tuple.
                tcx.intern_layout(self.scalar_pair(data_ptr, metadata))
            }

            ty::Dynamic(_, _, ty::DynStar) => {
                let mut data = scalar_unit(Int(dl.ptr_sized_integer(), false));
                data.valid_range_mut().start = 0;
                let mut vtable = scalar_unit(Pointer);
                vtable.valid_range_mut().start = 1;
                tcx.intern_layout(self.scalar_pair(data, vtable))
            }

            // Arrays and slices.
            ty::Array(element, mut count) => {
                if count.has_projections() {
                    count = tcx.normalize_erasing_regions(param_env, count);
                    if count.has_projections() {
                        return Err(LayoutError::Unknown(ty));
                    }
                }

                let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?;
                let element = self.layout_of(element)?;
                let size =
                    element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?;

                let abi =
                    if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty)) {
                        Abi::Uninhabited
                    } else {
                        Abi::Aggregate { sized: true }
                    };

                let largest_niche = if count != 0 { element.largest_niche } else { None };

                tcx.intern_layout(LayoutS {
                    variants: Variants::Single { index: VariantIdx::new(0) },
                    fields: FieldsShape::Array { stride: element.size, count },
                    abi,
                    largest_niche,
                    align: element.align,
                    size,
                })
            }
            ty::Slice(element) => {
                let element = self.layout_of(element)?;
                tcx.intern_layout(LayoutS {
                    variants: Variants::Single { index: VariantIdx::new(0) },
                    fields: FieldsShape::Array { stride: element.size, count: 0 },
                    abi: Abi::Aggregate { sized: false },
                    largest_niche: None,
                    align: element.align,
                    size: Size::ZERO,
                })
            }
            ty::Str => tcx.intern_layout(LayoutS {
                variants: Variants::Single { index: VariantIdx::new(0) },
                fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
                abi: Abi::Aggregate { sized: false },
                largest_niche: None,
                align: dl.i8_align,
                size: Size::ZERO,
            }),

            // Odd unit types.
            ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?,
            ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
                let mut unit = self.univariant_uninterned(
                    ty,
                    &[],
                    &ReprOptions::default(),
                    StructKind::AlwaysSized,
                )?;
                match unit.abi {
                    Abi::Aggregate { ref mut sized } => *sized = false,
                    _ => bug!(),
                }
                tcx.intern_layout(unit)
            }

            ty::Generator(def_id, substs, _) => self.generator_layout(ty, def_id, substs)?,

            ty::Closure(_, ref substs) => {
                let tys = substs.as_closure().upvar_tys();
                univariant(
                    &tys.map(|ty| self.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
                    &ReprOptions::default(),
                    StructKind::AlwaysSized,
                )?
            }

            ty::Tuple(tys) => {
                let kind =
                    if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };

                univariant(
                    &tys.iter().map(|k| self.layout_of(k)).collect::<Result<Vec<_>, _>>()?,
                    &ReprOptions::default(),
                    kind,
                )?
            }

            // SIMD vector types.
            ty::Adt(def, substs) if def.repr().simd() => {
                if !def.is_struct() {
                    // Should have yielded E0517 by now.
                    tcx.sess.delay_span_bug(
                        DUMMY_SP,
                        "#[repr(simd)] was applied to an ADT that is not a struct",
                    );
                    return Err(LayoutError::Unknown(ty));
                }

                // Supported SIMD vectors are homogeneous ADTs with at least one field:
                //
                // * #[repr(simd)] struct S(T, T, T, T);
                // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
                // * #[repr(simd)] struct S([T; 4])
                //
                // where T is a primitive scalar (integer/float/pointer).

                // SIMD vectors with zero fields are not supported.
                // (should be caught by typeck)
                if def.non_enum_variant().fields.is_empty() {
                    tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
                }

                // Type of the first ADT field:
                let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs);

                // Heterogeneous SIMD vectors are not supported:
                // (should be caught by typeck)
                for fi in &def.non_enum_variant().fields {
                    if fi.ty(tcx, substs) != f0_ty {
                        tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty));
                    }
                }

                // The element type and number of elements of the SIMD vector
                // are obtained from:
                //
                // * the element type and length of the single array field, if
                // the first field is of array type, or
                //
                // * the homogeneous field type and the number of fields.
                let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() {
                    // First ADT field is an array:

                    // SIMD vectors with multiple array fields are not supported:
                    // (should be caught by typeck)
                    if def.non_enum_variant().fields.len() != 1 {
                        tcx.sess.fatal(&format!(
                            "monomorphising SIMD type `{}` with more than one array field",
                            ty
                        ));
                    }

                    // Extract the number of elements from the layout of the array field:
                    let FieldsShape::Array { count, .. } = self.layout_of(f0_ty)?.layout.fields() else {
                        return Err(LayoutError::Unknown(ty));
                    };

                    (*e_ty, *count, true)
                } else {
                    // First ADT field is not an array:
                    (f0_ty, def.non_enum_variant().fields.len() as _, false)
                };

                // SIMD vectors of zero length are not supported.
                // Additionally, lengths are capped at 2^16 as a fixed maximum backends must
                // support.
                //
                // Can't be caught in typeck if the array length is generic.
                if e_len == 0 {
                    tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
                } else if e_len > MAX_SIMD_LANES {
                    tcx.sess.fatal(&format!(
                        "monomorphising SIMD type `{}` of length greater than {}",
                        ty, MAX_SIMD_LANES,
                    ));
                }

                // Compute the ABI of the element type:
                let e_ly = self.layout_of(e_ty)?;
                let Abi::Scalar(e_abi) = e_ly.abi else {
                    // This error isn't caught in typeck, e.g., if
                    // the element type of the vector is generic.
                    tcx.sess.fatal(&format!(
                        "monomorphising SIMD type `{}` with a non-primitive-scalar \
                        (integer/float/pointer) element type `{}`",
                        ty, e_ty
                    ))
                };

                // Compute the size and alignment of the vector:
                let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?;
                let align = dl.vector_align(size);
                let size = size.align_to(align.abi);

                // Compute the placement of the vector fields:
                let fields = if is_array {
                    FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] }
                } else {
                    FieldsShape::Array { stride: e_ly.size, count: e_len }
                };

                tcx.intern_layout(LayoutS {
                    variants: Variants::Single { index: VariantIdx::new(0) },
                    fields,
                    abi: Abi::Vector { element: e_abi, count: e_len },
                    largest_niche: e_ly.largest_niche,
                    size,
                    align,
                })
            }

            // ADTs.
            ty::Adt(def, substs) => {
                // Cache the field layouts.
                let variants = def
                    .variants()
                    .iter()
                    .map(|v| {
                        v.fields
                            .iter()
                            .map(|field| self.layout_of(field.ty(tcx, substs)))
                            .collect::<Result<Vec<_>, _>>()
                    })
                    .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;

                if def.is_union() {
                    if def.repr().pack.is_some() && def.repr().align.is_some() {
                        self.tcx.sess.delay_span_bug(
                            tcx.def_span(def.did()),
                            "union cannot be packed and aligned",
                        );
                        return Err(LayoutError::Unknown(ty));
                    }

                    let mut align =
                        if def.repr().pack.is_some() { dl.i8_align } else { dl.aggregate_align };

                    if let Some(repr_align) = def.repr().align {
                        align = align.max(AbiAndPrefAlign::new(repr_align));
                    }

                    let optimize = !def.repr().inhibit_union_abi_opt();
                    let mut size = Size::ZERO;
                    let mut abi = Abi::Aggregate { sized: true };
                    let index = VariantIdx::new(0);
                    for field in &variants[index] {
                        assert!(!field.is_unsized());
                        align = align.max(field.align);

                        // If all non-ZST fields have the same ABI, forward this ABI
                        if optimize && !field.is_zst() {
                            // Discard valid range information and allow undef
                            let field_abi = match field.abi {
                                Abi::Scalar(x) => Abi::Scalar(x.to_union()),
                                Abi::ScalarPair(x, y) => {
                                    Abi::ScalarPair(x.to_union(), y.to_union())
                                }
                                Abi::Vector { element: x, count } => {
                                    Abi::Vector { element: x.to_union(), count }
                                }
                                Abi::Uninhabited | Abi::Aggregate { .. } => {
                                    Abi::Aggregate { sized: true }
                                }
                            };

                            if size == Size::ZERO {
                                // first non ZST: initialize 'abi'
                                abi = field_abi;
                            } else if abi != field_abi {
                                // different fields have different ABI: reset to Aggregate
                                abi = Abi::Aggregate { sized: true };
                            }
                        }

                        size = cmp::max(size, field.size);
                    }

                    if let Some(pack) = def.repr().pack {
                        align = align.min(AbiAndPrefAlign::new(pack));
                    }

                    return Ok(tcx.intern_layout(LayoutS {
                        variants: Variants::Single { index },
                        fields: FieldsShape::Union(
                            NonZeroUsize::new(variants[index].len())
                                .ok_or(LayoutError::Unknown(ty))?,
                        ),
                        abi,
                        largest_niche: None,
                        align,
                        size: size.align_to(align.abi),
                    }));
                }

                // A variant is absent if it's uninhabited and only has ZST fields.
                // Present uninhabited variants only require space for their fields,
                // but *not* an encoding of the discriminant (e.g., a tag value).
                // See issue #49298 for more details on the need to leave space
                // for non-ZST uninhabited data (mostly partial initialization).
                let absent = |fields: &[TyAndLayout<'_>]| {
                    let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited());
                    let is_zst = fields.iter().all(|f| f.is_zst());
                    uninhabited && is_zst
                };
                let (present_first, present_second) = {
                    let mut present_variants = variants
                        .iter_enumerated()
                        .filter_map(|(i, v)| if absent(v) { None } else { Some(i) });
                    (present_variants.next(), present_variants.next())
                };
                let present_first = match present_first {
                    Some(present_first) => present_first,
                    // Uninhabited because it has no variants, or only absent ones.
                    None if def.is_enum() => {
                        return Ok(tcx.layout_of(param_env.and(tcx.types.never))?.layout);
                    }
                    // If it's a struct, still compute a layout so that we can still compute the
                    // field offsets.
                    None => VariantIdx::new(0),
                };

                let is_struct = !def.is_enum() ||
                    // Only one variant is present.
                    (present_second.is_none() &&
                    // Representation optimizations are allowed.
                    !def.repr().inhibit_enum_layout_opt());
                if is_struct {
                    // Struct, or univariant enum equivalent to a struct.
                    // (Typechecking will reject discriminant-sizing attrs.)

                    let v = present_first;
                    let kind = if def.is_enum() || variants[v].is_empty() {
                        StructKind::AlwaysSized
                    } else {
                        let param_env = tcx.param_env(def.did());
                        let last_field = def.variant(v).fields.last().unwrap();
                        let always_sized =
                            tcx.type_of(last_field.did).is_sized(tcx.at(DUMMY_SP), param_env);
                        if !always_sized {
                            StructKind::MaybeUnsized
                        } else {
                            StructKind::AlwaysSized
                        }
                    };

                    let mut st = self.univariant_uninterned(ty, &variants[v], &def.repr(), kind)?;
                    st.variants = Variants::Single { index: v };

                    if def.is_unsafe_cell() {
                        let hide_niches = |scalar: &mut _| match scalar {
                            Scalar::Initialized { value, valid_range } => {
                                *valid_range = WrappingRange::full(value.size(dl))
                            }
                            // Already doesn't have any niches
                            Scalar::Union { .. } => {}
                        };
                        match &mut st.abi {
                            Abi::Uninhabited => {}
                            Abi::Scalar(scalar) => hide_niches(scalar),
                            Abi::ScalarPair(a, b) => {
                                hide_niches(a);
                                hide_niches(b);
                            }
                            Abi::Vector { element, count: _ } => hide_niches(element),
                            Abi::Aggregate { sized: _ } => {}
                        }
                        st.largest_niche = None;
                        return Ok(tcx.intern_layout(st));
                    }

                    let (start, end) = self.tcx.layout_scalar_valid_range(def.did());
                    match st.abi {
                        Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => {
                            // the asserts ensure that we are not using the
                            // `#[rustc_layout_scalar_valid_range(n)]`
                            // attribute to widen the range of anything as that would probably
                            // result in UB somewhere
                            // FIXME(eddyb) the asserts are probably not needed,
                            // as larger validity ranges would result in missed
                            // optimizations, *not* wrongly assuming the inner
                            // value is valid. e.g. unions enlarge validity ranges,
                            // because the values may be uninitialized.
                            if let Bound::Included(start) = start {
                                // FIXME(eddyb) this might be incorrect - it doesn't
                                // account for wrap-around (end < start) ranges.
                                let valid_range = scalar.valid_range_mut();
                                assert!(valid_range.start <= start);
                                valid_range.start = start;
                            }
                            if let Bound::Included(end) = end {
                                // FIXME(eddyb) this might be incorrect - it doesn't
                                // account for wrap-around (end < start) ranges.
                                let valid_range = scalar.valid_range_mut();
                                assert!(valid_range.end >= end);
                                valid_range.end = end;
                            }

                            // Update `largest_niche` if we have introduced a larger niche.
                            let niche = Niche::from_scalar(dl, Size::ZERO, *scalar);
                            if let Some(niche) = niche {
                                match st.largest_niche {
                                    Some(largest_niche) => {
                                        // Replace the existing niche even if they're equal,
                                        // because this one is at a lower offset.
                                        if largest_niche.available(dl) <= niche.available(dl) {
                                            st.largest_niche = Some(niche);
                                        }
                                    }
                                    None => st.largest_niche = Some(niche),
                                }
                            }
                        }
                        _ => assert!(
                            start == Bound::Unbounded && end == Bound::Unbounded,
                            "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}",
                            def,
                            st,
                        ),
                    }

                    return Ok(tcx.intern_layout(st));
                }

                // At this point, we have handled all unions and
                // structs. (We have also handled univariant enums
                // that allow representation optimization.)
                assert!(def.is_enum());

                // Until we've decided whether to use the tagged or
                // niche filling LayoutS, we don't want to intern the
                // variant layouts, so we can't store them in the
                // overall LayoutS. Store the overall LayoutS
                // and the variant LayoutSs here until then.
                struct TmpLayout<'tcx> {
                    layout: LayoutS<'tcx>,
                    variants: IndexVec<VariantIdx, LayoutS<'tcx>>,
                }

                let calculate_niche_filling_layout =
                    || -> Result<Option<TmpLayout<'tcx>>, LayoutError<'tcx>> {
                        // The current code for niche-filling relies on variant indices
                        // instead of actual discriminants, so enums with
                        // explicit discriminants (RFC #2363) would misbehave.
                        if def.repr().inhibit_enum_layout_opt()
                            || def
                                .variants()
                                .iter_enumerated()
                                .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32()))
                        {
                            return Ok(None);
                        }

                        if variants.len() < 2 {
                            return Ok(None);
                        }

                        let mut align = dl.aggregate_align;
                        let mut variant_layouts = variants
                            .iter_enumerated()
                            .map(|(j, v)| {
                                let mut st = self.univariant_uninterned(
                                    ty,
                                    v,
                                    &def.repr(),
                                    StructKind::AlwaysSized,
                                )?;
                                st.variants = Variants::Single { index: j };

                                align = align.max(st.align);

                                Ok(st)
                            })
                            .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;

                        let largest_variant_index = match variant_layouts
                            .iter_enumerated()
                            .max_by_key(|(_i, layout)| layout.size.bytes())
                            .map(|(i, _layout)| i)
                        {
                            None => return Ok(None),
                            Some(i) => i,
                        };

                        let all_indices = VariantIdx::new(0)..=VariantIdx::new(variants.len() - 1);
                        let needs_disc = |index: VariantIdx| {
                            index != largest_variant_index && !absent(&variants[index])
                        };
                        let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap()
                            ..=all_indices.rev().find(|v| needs_disc(*v)).unwrap();

                        let count = niche_variants.size_hint().1.unwrap() as u128;

                        // Find the field with the largest niche
                        let (field_index, niche, (niche_start, niche_scalar)) = match variants
                            [largest_variant_index]
                            .iter()
                            .enumerate()
                            .filter_map(|(j, field)| Some((j, field.largest_niche?)))
                            .max_by_key(|(_, niche)| niche.available(dl))
                            .and_then(|(j, niche)| Some((j, niche, niche.reserve(self, count)?)))
                        {
                            None => return Ok(None),
                            Some(x) => x,
                        };

                        let niche_offset = niche.offset
                            + variant_layouts[largest_variant_index].fields.offset(field_index);
                        let niche_size = niche.value.size(dl);
                        let size = variant_layouts[largest_variant_index].size.align_to(align.abi);

                        let all_variants_fit =
                            variant_layouts.iter_enumerated_mut().all(|(i, layout)| {
                                if i == largest_variant_index {
                                    return true;
                                }

                                layout.largest_niche = None;

                                if layout.size <= niche_offset {
                                    // This variant will fit before the niche.
                                    return true;
                                }

                                // Determine if it'll fit after the niche.
                                let this_align = layout.align.abi;
                                let this_offset = (niche_offset + niche_size).align_to(this_align);

                                if this_offset + layout.size > size {
                                    return false;
                                }

                                // It'll fit, but we need to make some adjustments.
                                match layout.fields {
                                    FieldsShape::Arbitrary { ref mut offsets, .. } => {
                                        for (j, offset) in offsets.iter_mut().enumerate() {
                                            if !variants[i][j].is_zst() {
                                                *offset += this_offset;
                                            }
                                        }
                                    }
                                    _ => {
                                        panic!("Layout of fields should be Arbitrary for variants")
                                    }
                                }

                                // It can't be a Scalar or ScalarPair because the offset isn't 0.
                                if !layout.abi.is_uninhabited() {
                                    layout.abi = Abi::Aggregate { sized: true };
                                }
                                layout.size += this_offset;

                                true
                            });

                        if !all_variants_fit {
                            return Ok(None);
                        }

                        let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar);

                        let others_zst = variant_layouts.iter_enumerated().all(|(i, layout)| {
                            i == largest_variant_index || layout.size == Size::ZERO
                        });
                        let same_size = size == variant_layouts[largest_variant_index].size;
                        let same_align = align == variant_layouts[largest_variant_index].align;

                        let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) {
                            Abi::Uninhabited
                        } else if same_size && same_align && others_zst {
                            match variant_layouts[largest_variant_index].abi {
                                // When the total alignment and size match, we can use the
                                // same ABI as the scalar variant with the reserved niche.
                                Abi::Scalar(_) => Abi::Scalar(niche_scalar),
                                Abi::ScalarPair(first, second) => {
                                    // Only the niche is guaranteed to be initialised,
                                    // so use union layouts for the other primitive.
                                    if niche_offset == Size::ZERO {
                                        Abi::ScalarPair(niche_scalar, second.to_union())
                                    } else {
                                        Abi::ScalarPair(first.to_union(), niche_scalar)
                                    }
                                }
                                _ => Abi::Aggregate { sized: true },
                            }
                        } else {
                            Abi::Aggregate { sized: true }
                        };

                        let layout = LayoutS {
                            variants: Variants::Multiple {
                                tag: niche_scalar,
                                tag_encoding: TagEncoding::Niche {
                                    untagged_variant: largest_variant_index,
                                    niche_variants,
                                    niche_start,
                                },
                                tag_field: 0,
                                variants: IndexVec::new(),
                            },
                            fields: FieldsShape::Arbitrary {
                                offsets: vec![niche_offset],
                                memory_index: vec![0],
                            },
                            abi,
                            largest_niche,
                            size,
                            align,
                        };

                        Ok(Some(TmpLayout { layout, variants: variant_layouts }))
                    };

                let niche_filling_layout = calculate_niche_filling_layout()?;

                let (mut min, mut max) = (i128::MAX, i128::MIN);
                let discr_type = def.repr().discr_type();
                let bits = Integer::from_attr(self, discr_type).size().bits();
                for (i, discr) in def.discriminants(tcx) {
                    if variants[i].iter().any(|f| f.abi.is_uninhabited()) {
                        continue;
                    }
                    let mut x = discr.val as i128;
                    if discr_type.is_signed() {
                        // sign extend the raw representation to be an i128
                        x = (x << (128 - bits)) >> (128 - bits);
                    }
                    if x < min {
                        min = x;
                    }
                    if x > max {
                        max = x;
                    }
                }
                // We might have no inhabited variants, so pretend there's at least one.
                if (min, max) == (i128::MAX, i128::MIN) {
                    min = 0;
                    max = 0;
                }
                assert!(min <= max, "discriminant range is {}...{}", min, max);
                let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr(), min, max);

                let mut align = dl.aggregate_align;
                let mut size = Size::ZERO;

                // We're interested in the smallest alignment, so start large.
                let mut start_align = Align::from_bytes(256).unwrap();
                assert_eq!(Integer::for_align(dl, start_align), None);

                // repr(C) on an enum tells us to make a (tag, union) layout,
                // so we need to grow the prefix alignment to be at least
                // the alignment of the union. (This value is used both for
                // determining the alignment of the overall enum, and the
                // determining the alignment of the payload after the tag.)
                let mut prefix_align = min_ity.align(dl).abi;
                if def.repr().c() {
                    for fields in &variants {
                        for field in fields {
                            prefix_align = prefix_align.max(field.align.abi);
                        }
                    }
                }

                // Create the set of structs that represent each variant.
                let mut layout_variants = variants
                    .iter_enumerated()
                    .map(|(i, field_layouts)| {
                        let mut st = self.univariant_uninterned(
                            ty,
                            &field_layouts,
                            &def.repr(),
                            StructKind::Prefixed(min_ity.size(), prefix_align),
                        )?;
                        st.variants = Variants::Single { index: i };
                        // Find the first field we can't move later
                        // to make room for a larger discriminant.
                        for field in
                            st.fields.index_by_increasing_offset().map(|j| field_layouts[j])
                        {
                            if !field.is_zst() || field.align.abi.bytes() != 1 {
                                start_align = start_align.min(field.align.abi);
                                break;
                            }
                        }
                        size = cmp::max(size, st.size);
                        align = align.max(st.align);
                        Ok(st)
                    })
                    .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;

                // Align the maximum variant size to the largest alignment.
                size = size.align_to(align.abi);

                if size.bytes() >= dl.obj_size_bound() {
                    return Err(LayoutError::SizeOverflow(ty));
                }

                let typeck_ity = Integer::from_attr(dl, def.repr().discr_type());
                if typeck_ity < min_ity {
                    // It is a bug if Layout decided on a greater discriminant size than typeck for
                    // some reason at this point (based on values discriminant can take on). Mostly
                    // because this discriminant will be loaded, and then stored into variable of
                    // type calculated by typeck. Consider such case (a bug): typeck decided on
                    // byte-sized discriminant, but layout thinks we need a 16-bit to store all
                    // discriminant values. That would be a bug, because then, in codegen, in order
                    // to store this 16-bit discriminant into 8-bit sized temporary some of the
                    // space necessary to represent would have to be discarded (or layout is wrong
                    // on thinking it needs 16 bits)
                    bug!(
                        "layout decided on a larger discriminant type ({:?}) than typeck ({:?})",
                        min_ity,
                        typeck_ity
                    );
                    // However, it is fine to make discr type however large (as an optimisation)
                    // after this point – we’ll just truncate the value we load in codegen.
                }

                // Check to see if we should use a different type for the
                // discriminant. We can safely use a type with the same size
                // as the alignment of the first field of each variant.
                // We increase the size of the discriminant to avoid LLVM copying
                // padding when it doesn't need to. This normally causes unaligned
                // load/stores and excessive memcpy/memset operations. By using a
                // bigger integer size, LLVM can be sure about its contents and
                // won't be so conservative.

                // Use the initial field alignment
                let mut ity = if def.repr().c() || def.repr().int.is_some() {
                    min_ity
                } else {
                    Integer::for_align(dl, start_align).unwrap_or(min_ity)
                };

                // If the alignment is not larger than the chosen discriminant size,
                // don't use the alignment as the final size.
                if ity <= min_ity {
                    ity = min_ity;
                } else {
                    // Patch up the variants' first few fields.
                    let old_ity_size = min_ity.size();
                    let new_ity_size = ity.size();
                    for variant in &mut layout_variants {
                        match variant.fields {
                            FieldsShape::Arbitrary { ref mut offsets, .. } => {
                                for i in offsets {
                                    if *i <= old_ity_size {
                                        assert_eq!(*i, old_ity_size);
                                        *i = new_ity_size;
                                    }
                                }
                                // We might be making the struct larger.
                                if variant.size <= old_ity_size {
                                    variant.size = new_ity_size;
                                }
                            }
                            _ => bug!(),
                        }
                    }
                }

                let tag_mask = ity.size().unsigned_int_max();
                let tag = Scalar::Initialized {
                    value: Int(ity, signed),
                    valid_range: WrappingRange {
                        start: (min as u128 & tag_mask),
                        end: (max as u128 & tag_mask),
                    },
                };
                let mut abi = Abi::Aggregate { sized: true };

                if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
                    abi = Abi::Uninhabited;
                } else if tag.size(dl) == size {
                    // Make sure we only use scalar layout when the enum is entirely its
                    // own tag (i.e. it has no padding nor any non-ZST variant fields).
                    abi = Abi::Scalar(tag);
                } else {
                    // Try to use a ScalarPair for all tagged enums.
                    let mut common_prim = None;
                    let mut common_prim_initialized_in_all_variants = true;
                    for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) {
                        let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else {
                            bug!();
                        };
                        let mut fields =
                            iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst());
                        let (field, offset) = match (fields.next(), fields.next()) {
                            (None, None) => {
                                common_prim_initialized_in_all_variants = false;
                                continue;
                            }
                            (Some(pair), None) => pair,
                            _ => {
                                common_prim = None;
                                break;
                            }
                        };
                        let prim = match field.abi {
                            Abi::Scalar(scalar) => {
                                common_prim_initialized_in_all_variants &=
                                    matches!(scalar, Scalar::Initialized { .. });
                                scalar.primitive()
                            }
                            _ => {
                                common_prim = None;
                                break;
                            }
                        };
                        if let Some(pair) = common_prim {
                            // This is pretty conservative. We could go fancier
                            // by conflating things like i32 and u32, or even
                            // realising that (u8, u8) could just cohabit with
                            // u16 or even u32.
                            if pair != (prim, offset) {
                                common_prim = None;
                                break;
                            }
                        } else {
                            common_prim = Some((prim, offset));
                        }
                    }
                    if let Some((prim, offset)) = common_prim {
                        let prim_scalar = if common_prim_initialized_in_all_variants {
                            scalar_unit(prim)
                        } else {
                            // Common prim might be uninit.
                            Scalar::Union { value: prim }
                        };
                        let pair = self.scalar_pair(tag, prim_scalar);
                        let pair_offsets = match pair.fields {
                            FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
                                assert_eq!(memory_index, &[0, 1]);
                                offsets
                            }
                            _ => bug!(),
                        };
                        if pair_offsets[0] == Size::ZERO
                            && pair_offsets[1] == *offset
                            && align == pair.align
                            && size == pair.size
                        {
                            // We can use `ScalarPair` only when it matches our
                            // already computed layout (including `#[repr(C)]`).
                            abi = pair.abi;
                        }
                    }
                }

                // If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
                // variants to ensure they are consistent. This is because a downcast is
                // semantically a NOP, and thus should not affect layout.
                if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
                    for variant in &mut layout_variants {
                        // We only do this for variants with fields; the others are not accessed anyway.
                        // Also do not overwrite any already existing "clever" ABIs.
                        if variant.fields.count() > 0
                            && matches!(variant.abi, Abi::Aggregate { .. })
                        {
                            variant.abi = abi;
                            // Also need to bump up the size and alignment, so that the entire value fits in here.
                            variant.size = cmp::max(variant.size, size);
                            variant.align.abi = cmp::max(variant.align.abi, align.abi);
                        }
                    }
                }

                let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag);

                let tagged_layout = LayoutS {
                    variants: Variants::Multiple {
                        tag,
                        tag_encoding: TagEncoding::Direct,
                        tag_field: 0,
                        variants: IndexVec::new(),
                    },
                    fields: FieldsShape::Arbitrary {
                        offsets: vec![Size::ZERO],
                        memory_index: vec![0],
                    },
                    largest_niche,
                    abi,
                    align,
                    size,
                };

                let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants };

                let mut best_layout = match (tagged_layout, niche_filling_layout) {
                    (tl, Some(nl)) => {
                        // Pick the smaller layout; otherwise,
                        // pick the layout with the larger niche; otherwise,
                        // pick tagged as it has simpler codegen.
                        use Ordering::*;
                        let niche_size = |tmp_l: &TmpLayout<'_>| {
                            tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl))
                        };
                        match (
                            tl.layout.size.cmp(&nl.layout.size),
                            niche_size(&tl).cmp(&niche_size(&nl)),
                        ) {
                            (Greater, _) => nl,
                            (Equal, Less) => nl,
                            _ => tl,
                        }
                    }
                    (tl, None) => tl,
                };

                // Now we can intern the variant layouts and store them in the enum layout.
                best_layout.layout.variants = match best_layout.layout.variants {
                    Variants::Multiple { tag, tag_encoding, tag_field, .. } => Variants::Multiple {
                        tag,
                        tag_encoding,
                        tag_field,
                        variants: best_layout
                            .variants
                            .into_iter()
                            .map(|layout| tcx.intern_layout(layout))
                            .collect(),
                    },
                    _ => bug!(),
                };

                tcx.intern_layout(best_layout.layout)
            }

            // Types with no meaningful known layout.
            ty::Projection(_) | ty::Opaque(..) => {
                // NOTE(eddyb) `layout_of` query should've normalized these away,
                // if that was possible, so there's no reason to try again here.
                return Err(LayoutError::Unknown(ty));
            }

            ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => {
                bug!("Layout::compute: unexpected type `{}`", ty)
            }

            ty::Bound(..) | ty::Param(_) | ty::Error(_) => {
                return Err(LayoutError::Unknown(ty));
            }
        })
    }
}

/// Overlap eligibility and variant assignment for each GeneratorSavedLocal.
#[derive(Clone, Debug, PartialEq)]
enum SavedLocalEligibility {
    Unassigned,
    Assigned(VariantIdx),
    // FIXME: Use newtype_index so we aren't wasting bytes
    Ineligible(Option<u32>),
}

// When laying out generators, we divide our saved local fields into two
// categories: overlap-eligible and overlap-ineligible.
//
// Those fields which are ineligible for overlap go in a "prefix" at the
// beginning of the layout, and always have space reserved for them.
//
// Overlap-eligible fields are only assigned to one variant, so we lay
// those fields out for each variant and put them right after the
// prefix.
//
// Finally, in the layout details, we point to the fields from the
// variants they are assigned to. It is possible for some fields to be
// included in multiple variants. No field ever "moves around" in the
// layout; its offset is always the same.
//
// Also included in the layout are the upvars and the discriminant.
// These are included as fields on the "outer" layout; they are not part
// of any variant.
impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
    /// Compute the eligibility and assignment of each local.
    fn generator_saved_local_eligibility(
        &self,
        info: &GeneratorLayout<'tcx>,
    ) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) {
        use SavedLocalEligibility::*;

        let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> =
            IndexVec::from_elem_n(Unassigned, info.field_tys.len());

        // The saved locals not eligible for overlap. These will get
        // "promoted" to the prefix of our generator.
        let mut ineligible_locals = BitSet::new_empty(info.field_tys.len());

        // Figure out which of our saved locals are fields in only
        // one variant. The rest are deemed ineligible for overlap.
        for (variant_index, fields) in info.variant_fields.iter_enumerated() {
            for local in fields {
                match assignments[*local] {
                    Unassigned => {
                        assignments[*local] = Assigned(variant_index);
                    }
                    Assigned(idx) => {
                        // We've already seen this local at another suspension
                        // point, so it is no longer a candidate.
                        trace!(
                            "removing local {:?} in >1 variant ({:?}, {:?})",
                            local,
                            variant_index,
                            idx
                        );
                        ineligible_locals.insert(*local);
                        assignments[*local] = Ineligible(None);
                    }
                    Ineligible(_) => {}
                }
            }
        }

        // Next, check every pair of eligible locals to see if they
        // conflict.
        for local_a in info.storage_conflicts.rows() {
            let conflicts_a = info.storage_conflicts.count(local_a);
            if ineligible_locals.contains(local_a) {
                continue;
            }

            for local_b in info.storage_conflicts.iter(local_a) {
                // local_a and local_b are storage live at the same time, therefore they
                // cannot overlap in the generator layout. The only way to guarantee
                // this is if they are in the same variant, or one is ineligible
                // (which means it is stored in every variant).
                if ineligible_locals.contains(local_b)
                    || assignments[local_a] == assignments[local_b]
                {
                    continue;
                }

                // If they conflict, we will choose one to make ineligible.
                // This is not always optimal; it's just a greedy heuristic that
                // seems to produce good results most of the time.
                let conflicts_b = info.storage_conflicts.count(local_b);
                let (remove, other) =
                    if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
                ineligible_locals.insert(remove);
                assignments[remove] = Ineligible(None);
                trace!("removing local {:?} due to conflict with {:?}", remove, other);
            }
        }

        // Count the number of variants in use. If only one of them, then it is
        // impossible to overlap any locals in our layout. In this case it's
        // always better to make the remaining locals ineligible, so we can
        // lay them out with the other locals in the prefix and eliminate
        // unnecessary padding bytes.
        {
            let mut used_variants = BitSet::new_empty(info.variant_fields.len());
            for assignment in &assignments {
                if let Assigned(idx) = assignment {
                    used_variants.insert(*idx);
                }
            }
            if used_variants.count() < 2 {
                for assignment in assignments.iter_mut() {
                    *assignment = Ineligible(None);
                }
                ineligible_locals.insert_all();
            }
        }

        // Write down the order of our locals that will be promoted to the prefix.
        {
            for (idx, local) in ineligible_locals.iter().enumerate() {
                assignments[local] = Ineligible(Some(idx as u32));
            }
        }
        debug!("generator saved local assignments: {:?}", assignments);

        (ineligible_locals, assignments)
    }

    /// Compute the full generator layout.
    fn generator_layout(
        &self,
        ty: Ty<'tcx>,
        def_id: hir::def_id::DefId,
        substs: SubstsRef<'tcx>,
    ) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
        use SavedLocalEligibility::*;
        let tcx = self.tcx;
        let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs);

        let Some(info) = tcx.generator_layout(def_id) else {
            return Err(LayoutError::Unknown(ty));
        };
        let (ineligible_locals, assignments) = self.generator_saved_local_eligibility(&info);

        // Build a prefix layout, including "promoting" all ineligible
        // locals as part of the prefix. We compute the layout of all of
        // these fields at once to get optimal packing.
        let tag_index = substs.as_generator().prefix_tys().count();

        // `info.variant_fields` already accounts for the reserved variants, so no need to add them.
        let max_discr = (info.variant_fields.len() - 1) as u128;
        let discr_int = Integer::fit_unsigned(max_discr);
        let discr_int_ty = discr_int.to_ty(tcx, false);
        let tag = Scalar::Initialized {
            value: Primitive::Int(discr_int, false),
            valid_range: WrappingRange { start: 0, end: max_discr },
        };
        let tag_layout = self.tcx.intern_layout(LayoutS::scalar(self, tag));
        let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout };

        let promoted_layouts = ineligible_locals
            .iter()
            .map(|local| subst_field(info.field_tys[local]))
            .map(|ty| tcx.mk_maybe_uninit(ty))
            .map(|ty| self.layout_of(ty));
        let prefix_layouts = substs
            .as_generator()
            .prefix_tys()
            .map(|ty| self.layout_of(ty))
            .chain(iter::once(Ok(tag_layout)))
            .chain(promoted_layouts)
            .collect::<Result<Vec<_>, _>>()?;
        let prefix = self.univariant_uninterned(
            ty,
            &prefix_layouts,
            &ReprOptions::default(),
            StructKind::AlwaysSized,
        )?;

        let (prefix_size, prefix_align) = (prefix.size, prefix.align);

        // Split the prefix layout into the "outer" fields (upvars and
        // discriminant) and the "promoted" fields. Promoted fields will
        // get included in each variant that requested them in
        // GeneratorLayout.
        debug!("prefix = {:#?}", prefix);
        let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
            FieldsShape::Arbitrary { mut offsets, memory_index } => {
                let mut inverse_memory_index = invert_mapping(&memory_index);

                // "a" (`0..b_start`) and "b" (`b_start..`) correspond to
                // "outer" and "promoted" fields respectively.
                let b_start = (tag_index + 1) as u32;
                let offsets_b = offsets.split_off(b_start as usize);
                let offsets_a = offsets;

                // Disentangle the "a" and "b" components of `inverse_memory_index`
                // by preserving the order but keeping only one disjoint "half" each.
                // FIXME(eddyb) build a better abstraction for permutations, if possible.
                let inverse_memory_index_b: Vec<_> =
                    inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect();
                inverse_memory_index.retain(|&i| i < b_start);
                let inverse_memory_index_a = inverse_memory_index;

                // Since `inverse_memory_index_{a,b}` each only refer to their
                // respective fields, they can be safely inverted
                let memory_index_a = invert_mapping(&inverse_memory_index_a);
                let memory_index_b = invert_mapping(&inverse_memory_index_b);

                let outer_fields =
                    FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
                (outer_fields, offsets_b, memory_index_b)
            }
            _ => bug!(),
        };

        let mut size = prefix.size;
        let mut align = prefix.align;
        let variants = info
            .variant_fields
            .iter_enumerated()
            .map(|(index, variant_fields)| {
                // Only include overlap-eligible fields when we compute our variant layout.
                let variant_only_tys = variant_fields
                    .iter()
                    .filter(|local| match assignments[**local] {
                        Unassigned => bug!(),
                        Assigned(v) if v == index => true,
                        Assigned(_) => bug!("assignment does not match variant"),
                        Ineligible(_) => false,
                    })
                    .map(|local| subst_field(info.field_tys[*local]));

                let mut variant = self.univariant_uninterned(
                    ty,
                    &variant_only_tys
                        .map(|ty| self.layout_of(ty))
                        .collect::<Result<Vec<_>, _>>()?,
                    &ReprOptions::default(),
                    StructKind::Prefixed(prefix_size, prefix_align.abi),
                )?;
                variant.variants = Variants::Single { index };

                let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
                    bug!();
                };

                // Now, stitch the promoted and variant-only fields back together in
                // the order they are mentioned by our GeneratorLayout.
                // Because we only use some subset (that can differ between variants)
                // of the promoted fields, we can't just pick those elements of the
                // `promoted_memory_index` (as we'd end up with gaps).
                // So instead, we build an "inverse memory_index", as if all of the
                // promoted fields were being used, but leave the elements not in the
                // subset as `INVALID_FIELD_IDX`, which we can filter out later to
                // obtain a valid (bijective) mapping.
                const INVALID_FIELD_IDX: u32 = !0;
                let mut combined_inverse_memory_index =
                    vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()];
                let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
                let combined_offsets = variant_fields
                    .iter()
                    .enumerate()
                    .map(|(i, local)| {
                        let (offset, memory_index) = match assignments[*local] {
                            Unassigned => bug!(),
                            Assigned(_) => {
                                let (offset, memory_index) =
                                    offsets_and_memory_index.next().unwrap();
                                (offset, promoted_memory_index.len() as u32 + memory_index)
                            }
                            Ineligible(field_idx) => {
                                let field_idx = field_idx.unwrap() as usize;
                                (promoted_offsets[field_idx], promoted_memory_index[field_idx])
                            }
                        };
                        combined_inverse_memory_index[memory_index as usize] = i as u32;
                        offset
                    })
                    .collect();

                // Remove the unused slots and invert the mapping to obtain the
                // combined `memory_index` (also see previous comment).
                combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX);
                let combined_memory_index = invert_mapping(&combined_inverse_memory_index);

                variant.fields = FieldsShape::Arbitrary {
                    offsets: combined_offsets,
                    memory_index: combined_memory_index,
                };

                size = size.max(variant.size);
                align = align.max(variant.align);
                Ok(tcx.intern_layout(variant))
            })
            .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;

        size = size.align_to(align.abi);

        let abi =
            if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi().is_uninhabited()) {
                Abi::Uninhabited
            } else {
                Abi::Aggregate { sized: true }
            };

        let layout = tcx.intern_layout(LayoutS {
            variants: Variants::Multiple {
                tag,
                tag_encoding: TagEncoding::Direct,
                tag_field: tag_index,
                variants,
            },
            fields: outer_fields,
            abi,
            largest_niche: prefix.largest_niche,
            size,
            align,
        });
        debug!("generator layout ({:?}): {:#?}", ty, layout);
        Ok(layout)
    }

    /// This is invoked by the `layout_of` query to record the final
    /// layout of each type.
    #[inline(always)]
    fn record_layout_for_printing(&self, layout: TyAndLayout<'tcx>) {
        // If we are running with `-Zprint-type-sizes`, maybe record layouts
        // for dumping later.
        if self.tcx.sess.opts.unstable_opts.print_type_sizes {
            self.record_layout_for_printing_outlined(layout)
        }
    }

    fn record_layout_for_printing_outlined(&self, layout: TyAndLayout<'tcx>) {
        // Ignore layouts that are done with non-empty environments or
        // non-monomorphic layouts, as the user only wants to see the stuff
        // resulting from the final codegen session.
        if layout.ty.has_param_types_or_consts() || !self.param_env.caller_bounds().is_empty() {
            return;
        }

        // (delay format until we actually need it)
        let record = |kind, packed, opt_discr_size, variants| {
            let type_desc = format!("{:?}", layout.ty);
            self.tcx.sess.code_stats.record_type_size(
                kind,
                type_desc,
                layout.align.abi,
                layout.size,
                packed,
                opt_discr_size,
                variants,
            );
        };

        let adt_def = match *layout.ty.kind() {
            ty::Adt(ref adt_def, _) => {
                debug!("print-type-size t: `{:?}` process adt", layout.ty);
                adt_def
            }

            ty::Closure(..) => {
                debug!("print-type-size t: `{:?}` record closure", layout.ty);
                record(DataTypeKind::Closure, false, None, vec![]);
                return;
            }

            _ => {
                debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
                return;
            }
        };

        let adt_kind = adt_def.adt_kind();
        let adt_packed = adt_def.repr().pack.is_some();

        let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
            let mut min_size = Size::ZERO;
            let field_info: Vec<_> = flds
                .iter()
                .enumerate()
                .map(|(i, &name)| {
                    let field_layout = layout.field(self, i);
                    let offset = layout.fields.offset(i);
                    let field_end = offset + field_layout.size;
                    if min_size < field_end {
                        min_size = field_end;
                    }
                    FieldInfo {
                        name,
                        offset: offset.bytes(),
                        size: field_layout.size.bytes(),
                        align: field_layout.align.abi.bytes(),
                    }
                })
                .collect();

            VariantInfo {
                name: n,
                kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
                align: layout.align.abi.bytes(),
                size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
                fields: field_info,
            }
        };

        match layout.variants {
            Variants::Single { index } => {
                if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive {
                    debug!(
                        "print-type-size `{:#?}` variant {}",
                        layout,
                        adt_def.variant(index).name
                    );
                    let variant_def = &adt_def.variant(index);
                    let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
                    record(
                        adt_kind.into(),
                        adt_packed,
                        None,
                        vec![build_variant_info(Some(variant_def.name), &fields, layout)],
                    );
                } else {
                    // (This case arises for *empty* enums; so give it
                    // zero variants.)
                    record(adt_kind.into(), adt_packed, None, vec![]);
                }
            }

            Variants::Multiple { tag, ref tag_encoding, .. } => {
                debug!(
                    "print-type-size `{:#?}` adt general variants def {}",
                    layout.ty,
                    adt_def.variants().len()
                );
                let variant_infos: Vec<_> = adt_def
                    .variants()
                    .iter_enumerated()
                    .map(|(i, variant_def)| {
                        let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
                        build_variant_info(
                            Some(variant_def.name),
                            &fields,
                            layout.for_variant(self, i),
                        )
                    })
                    .collect();
                record(
                    adt_kind.into(),
                    adt_packed,
                    match tag_encoding {
                        TagEncoding::Direct => Some(tag.size(self)),
                        _ => None,
                    },
                    variant_infos,
                );
            }
        }
    }
}

/// Type size "skeleton", i.e., the only information determining a type's size.
/// While this is conservative, (aside from constant sizes, only pointers,
/// newtypes thereof and null pointer optimized enums are allowed), it is
/// enough to statically check common use cases of transmute.
#[derive(Copy, Clone, Debug)]
pub enum SizeSkeleton<'tcx> {
    /// Any statically computable Layout.
    Known(Size),

    /// A potentially-fat pointer.
    Pointer {
        /// If true, this pointer is never null.
        non_zero: bool,
        /// The type which determines the unsized metadata, if any,
        /// of this pointer. Either a type parameter or a projection
        /// depending on one, with regions erased.
        tail: Ty<'tcx>,
    },
}

impl<'tcx> SizeSkeleton<'tcx> {
    pub fn compute(
        ty: Ty<'tcx>,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> Result<SizeSkeleton<'tcx>, LayoutError<'tcx>> {
        debug_assert!(!ty.has_infer_types_or_consts());

        // First try computing a static layout.
        let err = match tcx.layout_of(param_env.and(ty)) {
            Ok(layout) => {
                return Ok(SizeSkeleton::Known(layout.size));
            }
            Err(err) => err,
        };

        match *ty.kind() {
            ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
                let non_zero = !ty.is_unsafe_ptr();
                let tail = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
                match tail.kind() {
                    ty::Param(_) | ty::Projection(_) => {
                        debug_assert!(tail.has_param_types_or_consts());
                        Ok(SizeSkeleton::Pointer { non_zero, tail: tcx.erase_regions(tail) })
                    }
                    _ => bug!(
                        "SizeSkeleton::compute({}): layout errored ({}), yet \
                              tail `{}` is not a type parameter or a projection",
                        ty,
                        err,
                        tail
                    ),
                }
            }

            ty::Adt(def, substs) => {
                // Only newtypes and enums w/ nullable pointer optimization.
                if def.is_union() || def.variants().is_empty() || def.variants().len() > 2 {
                    return Err(err);
                }

                // Get a zero-sized variant or a pointer newtype.
                let zero_or_ptr_variant = |i| {
                    let i = VariantIdx::new(i);
                    let fields =
                        def.variant(i).fields.iter().map(|field| {
                            SizeSkeleton::compute(field.ty(tcx, substs), tcx, param_env)
                        });
                    let mut ptr = None;
                    for field in fields {
                        let field = field?;
                        match field {
                            SizeSkeleton::Known(size) => {
                                if size.bytes() > 0 {
                                    return Err(err);
                                }
                            }
                            SizeSkeleton::Pointer { .. } => {
                                if ptr.is_some() {
                                    return Err(err);
                                }
                                ptr = Some(field);
                            }
                        }
                    }
                    Ok(ptr)
                };

                let v0 = zero_or_ptr_variant(0)?;
                // Newtype.
                if def.variants().len() == 1 {
                    if let Some(SizeSkeleton::Pointer { non_zero, tail }) = v0 {
                        return Ok(SizeSkeleton::Pointer {
                            non_zero: non_zero
                                || match tcx.layout_scalar_valid_range(def.did()) {
                                    (Bound::Included(start), Bound::Unbounded) => start > 0,
                                    (Bound::Included(start), Bound::Included(end)) => {
                                        0 < start && start < end
                                    }
                                    _ => false,
                                },
                            tail,
                        });
                    } else {
                        return Err(err);
                    }
                }

                let v1 = zero_or_ptr_variant(1)?;
                // Nullable pointer enum optimization.
                match (v0, v1) {
                    (Some(SizeSkeleton::Pointer { non_zero: true, tail }), None)
                    | (None, Some(SizeSkeleton::Pointer { non_zero: true, tail })) => {
                        Ok(SizeSkeleton::Pointer { non_zero: false, tail })
                    }
                    _ => Err(err),
                }
            }

            ty::Projection(_) | ty::Opaque(..) => {
                let normalized = tcx.normalize_erasing_regions(param_env, ty);
                if ty == normalized {
                    Err(err)
                } else {
                    SizeSkeleton::compute(normalized, tcx, param_env)
                }
            }

            _ => Err(err),
        }
    }

    pub fn same_size(self, other: SizeSkeleton<'tcx>) -> bool {
        match (self, other) {
            (SizeSkeleton::Known(a), SizeSkeleton::Known(b)) => a == b,
            (SizeSkeleton::Pointer { tail: a, .. }, SizeSkeleton::Pointer { tail: b, .. }) => {
                a == b
            }
            _ => false,
        }
    }
}

pub trait HasTyCtxt<'tcx>: HasDataLayout {
    fn tcx(&self) -> TyCtxt<'tcx>;
}

pub trait HasParamEnv<'tcx> {
    fn param_env(&self) -> ty::ParamEnv<'tcx>;
}

impl<'tcx> HasDataLayout for TyCtxt<'tcx> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.data_layout
    }
}

impl<'tcx> HasTargetSpec for TyCtxt<'tcx> {
    fn target_spec(&self) -> &Target {
        &self.sess.target
    }
}

impl<'tcx> HasTyCtxt<'tcx> for TyCtxt<'tcx> {
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        *self
    }
}

impl<'tcx> HasDataLayout for ty::query::TyCtxtAt<'tcx> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.data_layout
    }
}

impl<'tcx> HasTargetSpec for ty::query::TyCtxtAt<'tcx> {
    fn target_spec(&self) -> &Target {
        &self.sess.target
    }
}

impl<'tcx> HasTyCtxt<'tcx> for ty::query::TyCtxtAt<'tcx> {
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        **self
    }
}

impl<'tcx, C> HasParamEnv<'tcx> for LayoutCx<'tcx, C> {
    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.param_env
    }
}

impl<'tcx, T: HasDataLayout> HasDataLayout for LayoutCx<'tcx, T> {
    fn data_layout(&self) -> &TargetDataLayout {
        self.tcx.data_layout()
    }
}

impl<'tcx, T: HasTargetSpec> HasTargetSpec for LayoutCx<'tcx, T> {
    fn target_spec(&self) -> &Target {
        self.tcx.target_spec()
    }
}

impl<'tcx, T: HasTyCtxt<'tcx>> HasTyCtxt<'tcx> for LayoutCx<'tcx, T> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx.tcx()
    }
}

pub trait MaybeResult<T> {
    type Error;

    fn from(x: Result<T, Self::Error>) -> Self;
    fn to_result(self) -> Result<T, Self::Error>;
}

impl<T> MaybeResult<T> for T {
    type Error = !;

    fn from(Ok(x): Result<T, Self::Error>) -> Self {
        x
    }
    fn to_result(self) -> Result<T, Self::Error> {
        Ok(self)
    }
}

impl<T, E> MaybeResult<T> for Result<T, E> {
    type Error = E;

    fn from(x: Result<T, Self::Error>) -> Self {
        x
    }
    fn to_result(self) -> Result<T, Self::Error> {
        self
    }
}

pub type TyAndLayout<'tcx> = rustc_target::abi::TyAndLayout<'tcx, Ty<'tcx>>;

/// Trait for contexts that want to be able to compute layouts of types.
/// This automatically gives access to `LayoutOf`, through a blanket `impl`.
pub trait LayoutOfHelpers<'tcx>: HasDataLayout + HasTyCtxt<'tcx> + HasParamEnv<'tcx> {
    /// The `TyAndLayout`-wrapping type (or `TyAndLayout` itself), which will be
    /// returned from `layout_of` (see also `handle_layout_err`).
    type LayoutOfResult: MaybeResult<TyAndLayout<'tcx>>;

    /// `Span` to use for `tcx.at(span)`, from `layout_of`.
    // FIXME(eddyb) perhaps make this mandatory to get contexts to track it better?
    #[inline]
    fn layout_tcx_at_span(&self) -> Span {
        DUMMY_SP
    }

    /// Helper used for `layout_of`, to adapt `tcx.layout_of(...)` into a
    /// `Self::LayoutOfResult` (which does not need to be a `Result<...>`).
    ///
    /// Most `impl`s, which propagate `LayoutError`s, should simply return `err`,
    /// but this hook allows e.g. codegen to return only `TyAndLayout` from its
    /// `cx.layout_of(...)`, without any `Result<...>` around it to deal with
    /// (and any `LayoutError`s are turned into fatal errors or ICEs).
    fn handle_layout_err(
        &self,
        err: LayoutError<'tcx>,
        span: Span,
        ty: Ty<'tcx>,
    ) -> <Self::LayoutOfResult as MaybeResult<TyAndLayout<'tcx>>>::Error;
}

/// Blanket extension trait for contexts that can compute layouts of types.
pub trait LayoutOf<'tcx>: LayoutOfHelpers<'tcx> {
    /// Computes the layout of a type. Note that this implicitly
    /// executes in "reveal all" mode, and will normalize the input type.
    #[inline]
    fn layout_of(&self, ty: Ty<'tcx>) -> Self::LayoutOfResult {
        self.spanned_layout_of(ty, DUMMY_SP)
    }

    /// Computes the layout of a type, at `span`. Note that this implicitly
    /// executes in "reveal all" mode, and will normalize the input type.
    // FIXME(eddyb) avoid passing information like this, and instead add more
    // `TyCtxt::at`-like APIs to be able to do e.g. `cx.at(span).layout_of(ty)`.
    #[inline]
    fn spanned_layout_of(&self, ty: Ty<'tcx>, span: Span) -> Self::LayoutOfResult {
        let span = if !span.is_dummy() { span } else { self.layout_tcx_at_span() };
        let tcx = self.tcx().at(span);

        MaybeResult::from(
            tcx.layout_of(self.param_env().and(ty))
                .map_err(|err| self.handle_layout_err(err, span, ty)),
        )
    }
}

impl<'tcx, C: LayoutOfHelpers<'tcx>> LayoutOf<'tcx> for C {}

impl<'tcx> LayoutOfHelpers<'tcx> for LayoutCx<'tcx, TyCtxt<'tcx>> {
    type LayoutOfResult = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;

    #[inline]
    fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> {
        err
    }
}

impl<'tcx> LayoutOfHelpers<'tcx> for LayoutCx<'tcx, ty::query::TyCtxtAt<'tcx>> {
    type LayoutOfResult = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;

    #[inline]
    fn layout_tcx_at_span(&self) -> Span {
        self.tcx.span
    }

    #[inline]
    fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> {
        err
    }
}

impl<'tcx, C> TyAbiInterface<'tcx, C> for Ty<'tcx>
where
    C: HasTyCtxt<'tcx> + HasParamEnv<'tcx>,
{
    fn ty_and_layout_for_variant(
        this: TyAndLayout<'tcx>,
        cx: &C,
        variant_index: VariantIdx,
    ) -> TyAndLayout<'tcx> {
        let layout = match this.variants {
            Variants::Single { index }
                // If all variants but one are uninhabited, the variant layout is the enum layout.
                if index == variant_index &&
                // Don't confuse variants of uninhabited enums with the enum itself.
                // For more details see https://github.com/rust-lang/rust/issues/69763.
                this.fields != FieldsShape::Primitive =>
            {
                this.layout
            }

            Variants::Single { index } => {
                let tcx = cx.tcx();
                let param_env = cx.param_env();

                // Deny calling for_variant more than once for non-Single enums.
                if let Ok(original_layout) = tcx.layout_of(param_env.and(this.ty)) {
                    assert_eq!(original_layout.variants, Variants::Single { index });
                }

                let fields = match this.ty.kind() {
                    ty::Adt(def, _) if def.variants().is_empty() =>
                        bug!("for_variant called on zero-variant enum"),
                    ty::Adt(def, _) => def.variant(variant_index).fields.len(),
                    _ => bug!(),
                };
                tcx.intern_layout(LayoutS {
                    variants: Variants::Single { index: variant_index },
                    fields: match NonZeroUsize::new(fields) {
                        Some(fields) => FieldsShape::Union(fields),
                        None => FieldsShape::Arbitrary { offsets: vec![], memory_index: vec![] },
                    },
                    abi: Abi::Uninhabited,
                    largest_niche: None,
                    align: tcx.data_layout.i8_align,
                    size: Size::ZERO,
                })
            }

            Variants::Multiple { ref variants, .. } => variants[variant_index],
        };

        assert_eq!(*layout.variants(), Variants::Single { index: variant_index });

        TyAndLayout { ty: this.ty, layout }
    }

    fn ty_and_layout_field(this: TyAndLayout<'tcx>, cx: &C, i: usize) -> TyAndLayout<'tcx> {
        enum TyMaybeWithLayout<'tcx> {
            Ty(Ty<'tcx>),
            TyAndLayout(TyAndLayout<'tcx>),
        }

        fn field_ty_or_layout<'tcx>(
            this: TyAndLayout<'tcx>,
            cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>),
            i: usize,
        ) -> TyMaybeWithLayout<'tcx> {
            let tcx = cx.tcx();
            let tag_layout = |tag: Scalar| -> TyAndLayout<'tcx> {
                TyAndLayout {
                    layout: tcx.intern_layout(LayoutS::scalar(cx, tag)),
                    ty: tag.primitive().to_ty(tcx),
                }
            };

            match *this.ty.kind() {
                ty::Bool
                | ty::Char
                | ty::Int(_)
                | ty::Uint(_)
                | ty::Float(_)
                | ty::FnPtr(_)
                | ty::Never
                | ty::FnDef(..)
                | ty::GeneratorWitness(..)
                | ty::Foreign(..)
                | ty::Dynamic(_, _, ty::Dyn) => {
                    bug!("TyAndLayout::field({:?}): not applicable", this)
                }

                // Potentially-fat pointers.
                ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
                    assert!(i < this.fields.count());

                    // Reuse the fat `*T` type as its own thin pointer data field.
                    // This provides information about, e.g., DST struct pointees
                    // (which may have no non-DST form), and will work as long
                    // as the `Abi` or `FieldsShape` is checked by users.
                    if i == 0 {
                        let nil = tcx.mk_unit();
                        let unit_ptr_ty = if this.ty.is_unsafe_ptr() {
                            tcx.mk_mut_ptr(nil)
                        } else {
                            tcx.mk_mut_ref(tcx.lifetimes.re_static, nil)
                        };

                        // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing
                        // the `Result` should always work because the type is
                        // always either `*mut ()` or `&'static mut ()`.
                        return TyMaybeWithLayout::TyAndLayout(TyAndLayout {
                            ty: this.ty,
                            ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap()
                        });
                    }

                    match tcx.struct_tail_erasing_lifetimes(pointee, cx.param_env()).kind() {
                        ty::Slice(_) | ty::Str => TyMaybeWithLayout::Ty(tcx.types.usize),
                        ty::Dynamic(_, _, ty::Dyn) => {
                            TyMaybeWithLayout::Ty(tcx.mk_imm_ref(
                                tcx.lifetimes.re_static,
                                tcx.mk_array(tcx.types.usize, 3),
                            ))
                            /* FIXME: use actual fn pointers
                            Warning: naively computing the number of entries in the
                            vtable by counting the methods on the trait + methods on
                            all parent traits does not work, because some methods can
                            be not object safe and thus excluded from the vtable.
                            Increase this counter if you tried to implement this but
                            failed to do it without duplicating a lot of code from
                            other places in the compiler: 2
                            tcx.mk_tup(&[
                                tcx.mk_array(tcx.types.usize, 3),
                                tcx.mk_array(Option<fn()>),
                            ])
                            */
                        }
                        _ => bug!("TyAndLayout::field({:?}): not applicable", this),
                    }
                }

                // Arrays and slices.
                ty::Array(element, _) | ty::Slice(element) => TyMaybeWithLayout::Ty(element),
                ty::Str => TyMaybeWithLayout::Ty(tcx.types.u8),

                // Tuples, generators and closures.
                ty::Closure(_, ref substs) => field_ty_or_layout(
                    TyAndLayout { ty: substs.as_closure().tupled_upvars_ty(), ..this },
                    cx,
                    i,
                ),

                ty::Generator(def_id, ref substs, _) => match this.variants {
                    Variants::Single { index } => TyMaybeWithLayout::Ty(
                        substs
                            .as_generator()
                            .state_tys(def_id, tcx)
                            .nth(index.as_usize())
                            .unwrap()
                            .nth(i)
                            .unwrap(),
                    ),
                    Variants::Multiple { tag, tag_field, .. } => {
                        if i == tag_field {
                            return TyMaybeWithLayout::TyAndLayout(tag_layout(tag));
                        }
                        TyMaybeWithLayout::Ty(substs.as_generator().prefix_tys().nth(i).unwrap())
                    }
                },

                ty::Tuple(tys) => TyMaybeWithLayout::Ty(tys[i]),

                // ADTs.
                ty::Adt(def, substs) => {
                    match this.variants {
                        Variants::Single { index } => {
                            TyMaybeWithLayout::Ty(def.variant(index).fields[i].ty(tcx, substs))
                        }

                        // Discriminant field for enums (where applicable).
                        Variants::Multiple { tag, .. } => {
                            assert_eq!(i, 0);
                            return TyMaybeWithLayout::TyAndLayout(tag_layout(tag));
                        }
                    }
                }

                ty::Dynamic(_, _, ty::DynStar) => {
                    if i == 0 {
                        TyMaybeWithLayout::Ty(tcx.types.usize)
                    } else if i == 1 {
                        // FIXME(dyn-star) same FIXME as above applies here too
                        TyMaybeWithLayout::Ty(
                            tcx.mk_imm_ref(
                                tcx.lifetimes.re_static,
                                tcx.mk_array(tcx.types.usize, 3),
                            ),
                        )
                    } else {
                        bug!("no field {i} on dyn*")
                    }
                }

                ty::Projection(_)
                | ty::Bound(..)
                | ty::Placeholder(..)
                | ty::Opaque(..)
                | ty::Param(_)
                | ty::Infer(_)
                | ty::Error(_) => bug!("TyAndLayout::field: unexpected type `{}`", this.ty),
            }
        }

        match field_ty_or_layout(this, cx, i) {
            TyMaybeWithLayout::Ty(field_ty) => {
                cx.tcx().layout_of(cx.param_env().and(field_ty)).unwrap_or_else(|e| {
                    bug!(
                        "failed to get layout for `{}`: {},\n\
                         despite it being a field (#{}) of an existing layout: {:#?}",
                        field_ty,
                        e,
                        i,
                        this
                    )
                })
            }
            TyMaybeWithLayout::TyAndLayout(field_layout) => field_layout,
        }
    }

    fn ty_and_layout_pointee_info_at(
        this: TyAndLayout<'tcx>,
        cx: &C,
        offset: Size,
    ) -> Option<PointeeInfo> {
        let tcx = cx.tcx();
        let param_env = cx.param_env();

        let addr_space_of_ty = |ty: Ty<'tcx>| {
            if ty.is_fn() { cx.data_layout().instruction_address_space } else { AddressSpace::DATA }
        };

        let pointee_info = match *this.ty.kind() {
            ty::RawPtr(mt) if offset.bytes() == 0 => {
                tcx.layout_of(param_env.and(mt.ty)).ok().map(|layout| PointeeInfo {
                    size: layout.size,
                    align: layout.align.abi,
                    safe: None,
                    address_space: addr_space_of_ty(mt.ty),
                })
            }
            ty::FnPtr(fn_sig) if offset.bytes() == 0 => {
                tcx.layout_of(param_env.and(tcx.mk_fn_ptr(fn_sig))).ok().map(|layout| PointeeInfo {
                    size: layout.size,
                    align: layout.align.abi,
                    safe: None,
                    address_space: cx.data_layout().instruction_address_space,
                })
            }
            ty::Ref(_, ty, mt) if offset.bytes() == 0 => {
                let address_space = addr_space_of_ty(ty);
                let kind = if tcx.sess.opts.optimize == OptLevel::No {
                    // Use conservative pointer kind if not optimizing. This saves us the
                    // Freeze/Unpin queries, and can save time in the codegen backend (noalias
                    // attributes in LLVM have compile-time cost even in unoptimized builds).
                    PointerKind::SharedMutable
                } else {
                    match mt {
                        hir::Mutability::Not => {
                            if ty.is_freeze(tcx.at(DUMMY_SP), cx.param_env()) {
                                PointerKind::Frozen
                            } else {
                                PointerKind::SharedMutable
                            }
                        }
                        hir::Mutability::Mut => {
                            // References to self-referential structures should not be considered
                            // noalias, as another pointer to the structure can be obtained, that
                            // is not based-on the original reference. We consider all !Unpin
                            // types to be potentially self-referential here.
                            if ty.is_unpin(tcx.at(DUMMY_SP), cx.param_env()) {
                                PointerKind::UniqueBorrowed
                            } else {
                                PointerKind::UniqueBorrowedPinned
                            }
                        }
                    }
                };

                tcx.layout_of(param_env.and(ty)).ok().map(|layout| PointeeInfo {
                    size: layout.size,
                    align: layout.align.abi,
                    safe: Some(kind),
                    address_space,
                })
            }

            _ => {
                let mut data_variant = match this.variants {
                    // Within the discriminant field, only the niche itself is
                    // always initialized, so we only check for a pointer at its
                    // offset.
                    //
                    // If the niche is a pointer, it's either valid (according
                    // to its type), or null (which the niche field's scalar
                    // validity range encodes).  This allows using
                    // `dereferenceable_or_null` for e.g., `Option<&T>`, and
                    // this will continue to work as long as we don't start
                    // using more niches than just null (e.g., the first page of
                    // the address space, or unaligned pointers).
                    Variants::Multiple {
                        tag_encoding: TagEncoding::Niche { untagged_variant, .. },
                        tag_field,
                        ..
                    } if this.fields.offset(tag_field) == offset => {
                        Some(this.for_variant(cx, untagged_variant))
                    }
                    _ => Some(this),
                };

                if let Some(variant) = data_variant {
                    // We're not interested in any unions.
                    if let FieldsShape::Union(_) = variant.fields {
                        data_variant = None;
                    }
                }

                let mut result = None;

                if let Some(variant) = data_variant {
                    let ptr_end = offset + Pointer.size(cx);
                    for i in 0..variant.fields.count() {
                        let field_start = variant.fields.offset(i);
                        if field_start <= offset {
                            let field = variant.field(cx, i);
                            result = field.to_result().ok().and_then(|field| {
                                if ptr_end <= field_start + field.size {
                                    // We found the right field, look inside it.
                                    let field_info =
                                        field.pointee_info_at(cx, offset - field_start);
                                    field_info
                                } else {
                                    None
                                }
                            });
                            if result.is_some() {
                                break;
                            }
                        }
                    }
                }

                // FIXME(eddyb) This should be for `ptr::Unique<T>`, not `Box<T>`.
                if let Some(ref mut pointee) = result {
                    if let ty::Adt(def, _) = this.ty.kind() {
                        if def.is_box() && offset.bytes() == 0 {
                            pointee.safe = Some(PointerKind::UniqueOwned);
                        }
                    }
                }

                result
            }
        };

        debug!(
            "pointee_info_at (offset={:?}, type kind: {:?}) => {:?}",
            offset,
            this.ty.kind(),
            pointee_info
        );

        pointee_info
    }

    fn is_adt(this: TyAndLayout<'tcx>) -> bool {
        matches!(this.ty.kind(), ty::Adt(..))
    }

    fn is_never(this: TyAndLayout<'tcx>) -> bool {
        this.ty.kind() == &ty::Never
    }

    fn is_tuple(this: TyAndLayout<'tcx>) -> bool {
        matches!(this.ty.kind(), ty::Tuple(..))
    }

    fn is_unit(this: TyAndLayout<'tcx>) -> bool {
        matches!(this.ty.kind(), ty::Tuple(list) if list.len() == 0)
    }
}

impl<'tcx> ty::Instance<'tcx> {
    // NOTE(eddyb) this is private to avoid using it from outside of
    // `fn_abi_of_instance` - any other uses are either too high-level
    // for `Instance` (e.g. typeck would use `Ty::fn_sig` instead),
    // or should go through `FnAbi` instead, to avoid losing any
    // adjustments `fn_abi_of_instance` might be performing.
    #[tracing::instrument(level = "debug", skip(tcx, param_env))]
    fn fn_sig_for_fn_abi(
        &self,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> ty::PolyFnSig<'tcx> {
        let ty = self.ty(tcx, param_env);
        match *ty.kind() {
            ty::FnDef(..) => {
                // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering
                // parameters unused if they show up in the signature, but not in the `mir::Body`
                // (i.e. due to being inside a projection that got normalized, see
                // `src/test/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping
                // track of a polymorphization `ParamEnv` to allow normalizing later.
                let mut sig = match *ty.kind() {
                    ty::FnDef(def_id, substs) => tcx
                        .normalize_erasing_regions(tcx.param_env(def_id), tcx.bound_fn_sig(def_id))
                        .subst(tcx, substs),
                    _ => unreachable!(),
                };

                if let ty::InstanceDef::VTableShim(..) = self.def {
                    // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`.
                    sig = sig.map_bound(|mut sig| {
                        let mut inputs_and_output = sig.inputs_and_output.to_vec();
                        inputs_and_output[0] = tcx.mk_mut_ptr(inputs_and_output[0]);
                        sig.inputs_and_output = tcx.intern_type_list(&inputs_and_output);
                        sig
                    });
                }
                sig
            }
            ty::Closure(def_id, substs) => {
                let sig = substs.as_closure().sig();

                let bound_vars = tcx.mk_bound_variable_kinds(
                    sig.bound_vars()
                        .iter()
                        .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
                );
                let br = ty::BoundRegion {
                    var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                    kind: ty::BoundRegionKind::BrEnv,
                };
                let env_region = ty::ReLateBound(ty::INNERMOST, br);
                let env_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap();

                let sig = sig.skip_binder();
                ty::Binder::bind_with_vars(
                    tcx.mk_fn_sig(
                        iter::once(env_ty).chain(sig.inputs().iter().cloned()),
                        sig.output(),
                        sig.c_variadic,
                        sig.unsafety,
                        sig.abi,
                    ),
                    bound_vars,
                )
            }
            ty::Generator(_, substs, _) => {
                let sig = substs.as_generator().poly_sig();

                let bound_vars = tcx.mk_bound_variable_kinds(
                    sig.bound_vars()
                        .iter()
                        .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
                );
                let br = ty::BoundRegion {
                    var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                    kind: ty::BoundRegionKind::BrEnv,
                };
                let env_region = ty::ReLateBound(ty::INNERMOST, br);
                let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty);

                let pin_did = tcx.require_lang_item(LangItem::Pin, None);
                let pin_adt_ref = tcx.adt_def(pin_did);
                let pin_substs = tcx.intern_substs(&[env_ty.into()]);
                let env_ty = tcx.mk_adt(pin_adt_ref, pin_substs);

                let sig = sig.skip_binder();
                let state_did = tcx.require_lang_item(LangItem::GeneratorState, None);
                let state_adt_ref = tcx.adt_def(state_did);
                let state_substs = tcx.intern_substs(&[sig.yield_ty.into(), sig.return_ty.into()]);
                let ret_ty = tcx.mk_adt(state_adt_ref, state_substs);
                ty::Binder::bind_with_vars(
                    tcx.mk_fn_sig(
                        [env_ty, sig.resume_ty].iter(),
                        &ret_ty,
                        false,
                        hir::Unsafety::Normal,
                        rustc_target::spec::abi::Abi::Rust,
                    ),
                    bound_vars,
                )
            }
            _ => bug!("unexpected type {:?} in Instance::fn_sig", ty),
        }
    }
}

/// Calculates whether a function's ABI can unwind or not.
///
/// This takes two primary parameters:
///
/// * `codegen_fn_attr_flags` - these are flags calculated as part of the
///   codegen attrs for a defined function. For function pointers this set of
///   flags is the empty set. This is only applicable for Rust-defined
///   functions, and generally isn't needed except for small optimizations where
///   we try to say a function which otherwise might look like it could unwind
///   doesn't actually unwind (such as for intrinsics and such).
///
/// * `abi` - this is the ABI that the function is defined with. This is the
///   primary factor for determining whether a function can unwind or not.
///
/// Note that in this case unwinding is not necessarily panicking in Rust. Rust
/// panics are implemented with unwinds on most platform (when
/// `-Cpanic=unwind`), but this also accounts for `-Cpanic=abort` build modes.
/// Notably unwinding is disallowed for more non-Rust ABIs unless it's
/// specifically in the name (e.g. `"C-unwind"`). Unwinding within each ABI is
/// defined for each ABI individually, but it always corresponds to some form of
/// stack-based unwinding (the exact mechanism of which varies
/// platform-by-platform).
///
/// Rust functions are classified whether or not they can unwind based on the
/// active "panic strategy". In other words Rust functions are considered to
/// unwind in `-Cpanic=unwind` mode and cannot unwind in `-Cpanic=abort` mode.
/// Note that Rust supports intermingling panic=abort and panic=unwind code, but
/// only if the final panic mode is panic=abort. In this scenario any code
/// previously compiled assuming that a function can unwind is still correct, it
/// just never happens to actually unwind at runtime.
///
/// This function's answer to whether or not a function can unwind is quite
/// impactful throughout the compiler. This affects things like:
///
/// * Calling a function which can't unwind means codegen simply ignores any
///   associated unwinding cleanup.
/// * Calling a function which can unwind from a function which can't unwind
///   causes the `abort_unwinding_calls` MIR pass to insert a landing pad that
///   aborts the process.
/// * This affects whether functions have the LLVM `nounwind` attribute, which
///   affects various optimizations and codegen.
///
/// FIXME: this is actually buggy with respect to Rust functions. Rust functions
/// compiled with `-Cpanic=unwind` and referenced from another crate compiled
/// with `-Cpanic=abort` will look like they can't unwind when in fact they
/// might (from a foreign exception or similar).
#[inline]
#[tracing::instrument(level = "debug", skip(tcx))]
pub fn fn_can_unwind<'tcx>(tcx: TyCtxt<'tcx>, fn_def_id: Option<DefId>, abi: SpecAbi) -> bool {
    if let Some(did) = fn_def_id {
        // Special attribute for functions which can't unwind.
        if tcx.codegen_fn_attrs(did).flags.contains(CodegenFnAttrFlags::NEVER_UNWIND) {
            return false;
        }

        // With `-C panic=abort`, all non-FFI functions are required to not unwind.
        //
        // Note that this is true regardless ABI specified on the function -- a `extern "C-unwind"`
        // function defined in Rust is also required to abort.
        if tcx.sess.panic_strategy() == PanicStrategy::Abort && !tcx.is_foreign_item(did) {
            return false;
        }

        // With -Z panic-in-drop=abort, drop_in_place never unwinds.
        //
        // This is not part of `codegen_fn_attrs` as it can differ between crates
        // and therefore cannot be computed in core.
        if tcx.sess.opts.unstable_opts.panic_in_drop == PanicStrategy::Abort {
            if Some(did) == tcx.lang_items().drop_in_place_fn() {
                return false;
            }
        }
    }

    // Otherwise if this isn't special then unwinding is generally determined by
    // the ABI of the itself. ABIs like `C` have variants which also
    // specifically allow unwinding (`C-unwind`), but not all platform-specific
    // ABIs have such an option. Otherwise the only other thing here is Rust
    // itself, and those ABIs are determined by the panic strategy configured
    // for this compilation.
    //
    // Unfortunately at this time there's also another caveat. Rust [RFC
    // 2945][rfc] has been accepted and is in the process of being implemented
    // and stabilized. In this interim state we need to deal with historical
    // rustc behavior as well as plan for future rustc behavior.
    //
    // Historically functions declared with `extern "C"` were marked at the
    // codegen layer as `nounwind`. This happened regardless of `panic=unwind`
    // or not. This is UB for functions in `panic=unwind` mode that then
    // actually panic and unwind. Note that this behavior is true for both
    // externally declared functions as well as Rust-defined function.
    //
    // To fix this UB rustc would like to change in the future to catch unwinds
    // from function calls that may unwind within a Rust-defined `extern "C"`
    // function and forcibly abort the process, thereby respecting the
    // `nounwind` attribute emitted for `extern "C"`. This behavior change isn't
    // ready to roll out, so determining whether or not the `C` family of ABIs
    // unwinds is conditional not only on their definition but also whether the
    // `#![feature(c_unwind)]` feature gate is active.
    //
    // Note that this means that unlike historical compilers rustc now, by
    // default, unconditionally thinks that the `C` ABI may unwind. This will
    // prevent some optimization opportunities, however, so we try to scope this
    // change and only assume that `C` unwinds with `panic=unwind` (as opposed
    // to `panic=abort`).
    //
    // Eventually the check against `c_unwind` here will ideally get removed and
    // this'll be a little cleaner as it'll be a straightforward check of the
    // ABI.
    //
    // [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/2945-c-unwind-abi.md
    use SpecAbi::*;
    match abi {
        C { unwind }
        | System { unwind }
        | Cdecl { unwind }
        | Stdcall { unwind }
        | Fastcall { unwind }
        | Vectorcall { unwind }
        | Thiscall { unwind }
        | Aapcs { unwind }
        | Win64 { unwind }
        | SysV64 { unwind } => {
            unwind
                || (!tcx.features().c_unwind && tcx.sess.panic_strategy() == PanicStrategy::Unwind)
        }
        PtxKernel
        | Msp430Interrupt
        | X86Interrupt
        | AmdGpuKernel
        | EfiApi
        | AvrInterrupt
        | AvrNonBlockingInterrupt
        | CCmseNonSecureCall
        | Wasm
        | RustIntrinsic
        | PlatformIntrinsic
        | Unadjusted => false,
        Rust | RustCall | RustCold => tcx.sess.panic_strategy() == PanicStrategy::Unwind,
    }
}

#[inline]
pub fn conv_from_spec_abi(tcx: TyCtxt<'_>, abi: SpecAbi) -> Conv {
    use rustc_target::spec::abi::Abi::*;
    match tcx.sess.target.adjust_abi(abi) {
        RustIntrinsic | PlatformIntrinsic | Rust | RustCall => Conv::Rust,
        RustCold => Conv::RustCold,

        // It's the ABI's job to select this, not ours.
        System { .. } => bug!("system abi should be selected elsewhere"),
        EfiApi => bug!("eficall abi should be selected elsewhere"),

        Stdcall { .. } => Conv::X86Stdcall,
        Fastcall { .. } => Conv::X86Fastcall,
        Vectorcall { .. } => Conv::X86VectorCall,
        Thiscall { .. } => Conv::X86ThisCall,
        C { .. } => Conv::C,
        Unadjusted => Conv::C,
        Win64 { .. } => Conv::X86_64Win64,
        SysV64 { .. } => Conv::X86_64SysV,
        Aapcs { .. } => Conv::ArmAapcs,
        CCmseNonSecureCall => Conv::CCmseNonSecureCall,
        PtxKernel => Conv::PtxKernel,
        Msp430Interrupt => Conv::Msp430Intr,
        X86Interrupt => Conv::X86Intr,
        AmdGpuKernel => Conv::AmdGpuKernel,
        AvrInterrupt => Conv::AvrInterrupt,
        AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt,
        Wasm => Conv::C,

        // These API constants ought to be more specific...
        Cdecl { .. } => Conv::C,
    }
}

/// Error produced by attempting to compute or adjust a `FnAbi`.
#[derive(Copy, Clone, Debug, HashStable)]
pub enum FnAbiError<'tcx> {
    /// Error produced by a `layout_of` call, while computing `FnAbi` initially.
    Layout(LayoutError<'tcx>),

    /// Error produced by attempting to adjust a `FnAbi`, for a "foreign" ABI.
    AdjustForForeignAbi(call::AdjustForForeignAbiError),
}

impl<'tcx> From<LayoutError<'tcx>> for FnAbiError<'tcx> {
    fn from(err: LayoutError<'tcx>) -> Self {
        Self::Layout(err)
    }
}

impl From<call::AdjustForForeignAbiError> for FnAbiError<'_> {
    fn from(err: call::AdjustForForeignAbiError) -> Self {
        Self::AdjustForForeignAbi(err)
    }
}

impl<'tcx> fmt::Display for FnAbiError<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Layout(err) => err.fmt(f),
            Self::AdjustForForeignAbi(err) => err.fmt(f),
        }
    }
}

// FIXME(eddyb) maybe use something like this for an unified `fn_abi_of`, not
// just for error handling.
#[derive(Debug)]
pub enum FnAbiRequest<'tcx> {
    OfFnPtr { sig: ty::PolyFnSig<'tcx>, extra_args: &'tcx ty::List<Ty<'tcx>> },
    OfInstance { instance: ty::Instance<'tcx>, extra_args: &'tcx ty::List<Ty<'tcx>> },
}

/// Trait for contexts that want to be able to compute `FnAbi`s.
/// This automatically gives access to `FnAbiOf`, through a blanket `impl`.
pub trait FnAbiOfHelpers<'tcx>: LayoutOfHelpers<'tcx> {
    /// The `&FnAbi`-wrapping type (or `&FnAbi` itself), which will be
    /// returned from `fn_abi_of_*` (see also `handle_fn_abi_err`).
    type FnAbiOfResult: MaybeResult<&'tcx FnAbi<'tcx, Ty<'tcx>>>;

    /// Helper used for `fn_abi_of_*`, to adapt `tcx.fn_abi_of_*(...)` into a
    /// `Self::FnAbiOfResult` (which does not need to be a `Result<...>`).
    ///
    /// Most `impl`s, which propagate `FnAbiError`s, should simply return `err`,
    /// but this hook allows e.g. codegen to return only `&FnAbi` from its
    /// `cx.fn_abi_of_*(...)`, without any `Result<...>` around it to deal with
    /// (and any `FnAbiError`s are turned into fatal errors or ICEs).
    fn handle_fn_abi_err(
        &self,
        err: FnAbiError<'tcx>,
        span: Span,
        fn_abi_request: FnAbiRequest<'tcx>,
    ) -> <Self::FnAbiOfResult as MaybeResult<&'tcx FnAbi<'tcx, Ty<'tcx>>>>::Error;
}

/// Blanket extension trait for contexts that can compute `FnAbi`s.
pub trait FnAbiOf<'tcx>: FnAbiOfHelpers<'tcx> {
    /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers.
    ///
    /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance`
    /// instead, where the instance is an `InstanceDef::Virtual`.
    #[inline]
    fn fn_abi_of_fn_ptr(
        &self,
        sig: ty::PolyFnSig<'tcx>,
        extra_args: &'tcx ty::List<Ty<'tcx>>,
    ) -> Self::FnAbiOfResult {
        // FIXME(eddyb) get a better `span` here.
        let span = self.layout_tcx_at_span();
        let tcx = self.tcx().at(span);

        MaybeResult::from(tcx.fn_abi_of_fn_ptr(self.param_env().and((sig, extra_args))).map_err(
            |err| self.handle_fn_abi_err(err, span, FnAbiRequest::OfFnPtr { sig, extra_args }),
        ))
    }

    /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for
    /// direct calls to an `fn`.
    ///
    /// NB: that includes virtual calls, which are represented by "direct calls"
    /// to an `InstanceDef::Virtual` instance (of `<dyn Trait as Trait>::fn`).
    #[inline]
    #[tracing::instrument(level = "debug", skip(self))]
    fn fn_abi_of_instance(
        &self,
        instance: ty::Instance<'tcx>,
        extra_args: &'tcx ty::List<Ty<'tcx>>,
    ) -> Self::FnAbiOfResult {
        // FIXME(eddyb) get a better `span` here.
        let span = self.layout_tcx_at_span();
        let tcx = self.tcx().at(span);

        MaybeResult::from(
            tcx.fn_abi_of_instance(self.param_env().and((instance, extra_args))).map_err(|err| {
                // HACK(eddyb) at least for definitions of/calls to `Instance`s,
                // we can get some kind of span even if one wasn't provided.
                // However, we don't do this early in order to avoid calling
                // `def_span` unconditionally (which may have a perf penalty).
                let span = if !span.is_dummy() { span } else { tcx.def_span(instance.def_id()) };
                self.handle_fn_abi_err(err, span, FnAbiRequest::OfInstance { instance, extra_args })
            }),
        )
    }
}

impl<'tcx, C: FnAbiOfHelpers<'tcx>> FnAbiOf<'tcx> for C {}

fn fn_abi_of_fn_ptr<'tcx>(
    tcx: TyCtxt<'tcx>,
    query: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
    let (param_env, (sig, extra_args)) = query.into_parts();

    LayoutCx { tcx, param_env }.fn_abi_new_uncached(sig, extra_args, None, None, false)
}

fn fn_abi_of_instance<'tcx>(
    tcx: TyCtxt<'tcx>,
    query: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
    let (param_env, (instance, extra_args)) = query.into_parts();

    let sig = instance.fn_sig_for_fn_abi(tcx, param_env);

    let caller_location = if instance.def.requires_caller_location(tcx) {
        Some(tcx.caller_location_ty())
    } else {
        None
    };

    LayoutCx { tcx, param_env }.fn_abi_new_uncached(
        sig,
        extra_args,
        caller_location,
        Some(instance.def_id()),
        matches!(instance.def, ty::InstanceDef::Virtual(..)),
    )
}

// Handle safe Rust thin and fat pointers.
pub fn adjust_for_rust_scalar<'tcx>(
    cx: LayoutCx<'tcx, TyCtxt<'tcx>>,
    attrs: &mut ArgAttributes,
    scalar: Scalar,
    layout: TyAndLayout<'tcx>,
    offset: Size,
    is_return: bool,
) {
    // Booleans are always a noundef i1 that needs to be zero-extended.
    if scalar.is_bool() {
        attrs.ext(ArgExtension::Zext);
        attrs.set(ArgAttribute::NoUndef);
        return;
    }

    // Scalars which have invalid values cannot be undef.
    if !scalar.is_always_valid(&cx) {
        attrs.set(ArgAttribute::NoUndef);
    }

    // Only pointer types handled below.
    let Scalar::Initialized { value: Pointer, valid_range} = scalar else { return };

    if !valid_range.contains(0) {
        attrs.set(ArgAttribute::NonNull);
    }

    if let Some(pointee) = layout.pointee_info_at(&cx, offset) {
        if let Some(kind) = pointee.safe {
            attrs.pointee_align = Some(pointee.align);

            // `Box` (`UniqueBorrowed`) are not necessarily dereferenceable
            // for the entire duration of the function as they can be deallocated
            // at any time. Same for shared mutable references. If LLVM had a
            // way to say "dereferenceable on entry" we could use it here.
            attrs.pointee_size = match kind {
                PointerKind::UniqueBorrowed
                | PointerKind::UniqueBorrowedPinned
                | PointerKind::Frozen => pointee.size,
                PointerKind::SharedMutable | PointerKind::UniqueOwned => Size::ZERO,
            };

            // `Box`, `&T`, and `&mut T` cannot be undef.
            // Note that this only applies to the value of the pointer itself;
            // this attribute doesn't make it UB for the pointed-to data to be undef.
            attrs.set(ArgAttribute::NoUndef);

            // The aliasing rules for `Box<T>` are still not decided, but currently we emit
            // `noalias` for it. This can be turned off using an unstable flag.
            // See https://github.com/rust-lang/unsafe-code-guidelines/issues/326
            let noalias_for_box = cx.tcx.sess.opts.unstable_opts.box_noalias.unwrap_or(true);

            // `&mut` pointer parameters never alias other parameters,
            // or mutable global data
            //
            // `&T` where `T` contains no `UnsafeCell<U>` is immutable,
            // and can be marked as both `readonly` and `noalias`, as
            // LLVM's definition of `noalias` is based solely on memory
            // dependencies rather than pointer equality
            //
            // Due to past miscompiles in LLVM, we apply a separate NoAliasMutRef attribute
            // for UniqueBorrowed arguments, so that the codegen backend can decide whether
            // or not to actually emit the attribute. It can also be controlled with the
            // `-Zmutable-noalias` debugging option.
            let no_alias = match kind {
                PointerKind::SharedMutable
                | PointerKind::UniqueBorrowed
                | PointerKind::UniqueBorrowedPinned => false,
                PointerKind::UniqueOwned => noalias_for_box,
                PointerKind::Frozen => !is_return,
            };
            if no_alias {
                attrs.set(ArgAttribute::NoAlias);
            }

            if kind == PointerKind::Frozen && !is_return {
                attrs.set(ArgAttribute::ReadOnly);
            }

            if kind == PointerKind::UniqueBorrowed && !is_return {
                attrs.set(ArgAttribute::NoAliasMutRef);
            }
        }
    }
}

impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
    // FIXME(eddyb) perhaps group the signature/type-containing (or all of them?)
    // arguments of this method, into a separate `struct`.
    #[tracing::instrument(
        level = "debug",
        skip(self, caller_location, fn_def_id, force_thin_self_ptr)
    )]
    fn fn_abi_new_uncached(
        &self,
        sig: ty::PolyFnSig<'tcx>,
        extra_args: &[Ty<'tcx>],
        caller_location: Option<Ty<'tcx>>,
        fn_def_id: Option<DefId>,
        // FIXME(eddyb) replace this with something typed, like an `enum`.
        force_thin_self_ptr: bool,
    ) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, FnAbiError<'tcx>> {
        let sig = self.tcx.normalize_erasing_late_bound_regions(self.param_env, sig);

        let conv = conv_from_spec_abi(self.tcx(), sig.abi);

        let mut inputs = sig.inputs();
        let extra_args = if sig.abi == RustCall {
            assert!(!sig.c_variadic && extra_args.is_empty());

            if let Some(input) = sig.inputs().last() {
                if let ty::Tuple(tupled_arguments) = input.kind() {
                    inputs = &sig.inputs()[0..sig.inputs().len() - 1];
                    tupled_arguments
                } else {
                    bug!(
                        "argument to function with \"rust-call\" ABI \
                            is not a tuple"
                    );
                }
            } else {
                bug!(
                    "argument to function with \"rust-call\" ABI \
                        is not a tuple"
                );
            }
        } else {
            assert!(sig.c_variadic || extra_args.is_empty());
            extra_args
        };

        let target = &self.tcx.sess.target;
        let target_env_gnu_like = matches!(&target.env[..], "gnu" | "musl" | "uclibc");
        let win_x64_gnu = target.os == "windows" && target.arch == "x86_64" && target.env == "gnu";
        let linux_s390x_gnu_like =
            target.os == "linux" && target.arch == "s390x" && target_env_gnu_like;
        let linux_sparc64_gnu_like =
            target.os == "linux" && target.arch == "sparc64" && target_env_gnu_like;
        let linux_powerpc_gnu_like =
            target.os == "linux" && target.arch == "powerpc" && target_env_gnu_like;
        use SpecAbi::*;
        let rust_abi = matches!(sig.abi, RustIntrinsic | PlatformIntrinsic | Rust | RustCall);

        let arg_of = |ty: Ty<'tcx>, arg_idx: Option<usize>| -> Result<_, FnAbiError<'tcx>> {
            let span = tracing::debug_span!("arg_of");
            let _entered = span.enter();
            let is_return = arg_idx.is_none();

            let layout = self.layout_of(ty)?;
            let layout = if force_thin_self_ptr && arg_idx == Some(0) {
                // Don't pass the vtable, it's not an argument of the virtual fn.
                // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait`
                // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen
                make_thin_self_ptr(self, layout)
            } else {
                layout
            };

            let mut arg = ArgAbi::new(self, layout, |layout, scalar, offset| {
                let mut attrs = ArgAttributes::new();
                adjust_for_rust_scalar(*self, &mut attrs, scalar, *layout, offset, is_return);
                attrs
            });

            if arg.layout.is_zst() {
                // For some forsaken reason, x86_64-pc-windows-gnu
                // doesn't ignore zero-sized struct arguments.
                // The same is true for {s390x,sparc64,powerpc}-unknown-linux-{gnu,musl,uclibc}.
                if is_return
                    || rust_abi
                    || (!win_x64_gnu
                        && !linux_s390x_gnu_like
                        && !linux_sparc64_gnu_like
                        && !linux_powerpc_gnu_like)
                {
                    arg.mode = PassMode::Ignore;
                }
            }

            Ok(arg)
        };

        let mut fn_abi = FnAbi {
            ret: arg_of(sig.output(), None)?,
            args: inputs
                .iter()
                .copied()
                .chain(extra_args.iter().copied())
                .chain(caller_location)
                .enumerate()
                .map(|(i, ty)| arg_of(ty, Some(i)))
                .collect::<Result<_, _>>()?,
            c_variadic: sig.c_variadic,
            fixed_count: inputs.len() as u32,
            conv,
            can_unwind: fn_can_unwind(self.tcx(), fn_def_id, sig.abi),
        };
        self.fn_abi_adjust_for_abi(&mut fn_abi, sig.abi)?;
        debug!("fn_abi_new_uncached = {:?}", fn_abi);
        Ok(self.tcx.arena.alloc(fn_abi))
    }

    #[tracing::instrument(level = "trace", skip(self))]
    fn fn_abi_adjust_for_abi(
        &self,
        fn_abi: &mut FnAbi<'tcx, Ty<'tcx>>,
        abi: SpecAbi,
    ) -> Result<(), FnAbiError<'tcx>> {
        if abi == SpecAbi::Unadjusted {
            return Ok(());
        }

        if abi == SpecAbi::Rust
            || abi == SpecAbi::RustCall
            || abi == SpecAbi::RustIntrinsic
            || abi == SpecAbi::PlatformIntrinsic
        {
            let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>| {
                if arg.is_ignore() {
                    return;
                }

                match arg.layout.abi {
                    Abi::Aggregate { .. } => {}

                    // This is a fun case! The gist of what this is doing is
                    // that we want callers and callees to always agree on the
                    // ABI of how they pass SIMD arguments. If we were to *not*
                    // make these arguments indirect then they'd be immediates
                    // in LLVM, which means that they'd used whatever the
                    // appropriate ABI is for the callee and the caller. That
                    // means, for example, if the caller doesn't have AVX
                    // enabled but the callee does, then passing an AVX argument
                    // across this boundary would cause corrupt data to show up.
                    //
                    // This problem is fixed by unconditionally passing SIMD
                    // arguments through memory between callers and callees
                    // which should get them all to agree on ABI regardless of
                    // target feature sets. Some more information about this
                    // issue can be found in #44367.
                    //
                    // Note that the platform intrinsic ABI is exempt here as
                    // that's how we connect up to LLVM and it's unstable
                    // anyway, we control all calls to it in libstd.
                    Abi::Vector { .. }
                        if abi != SpecAbi::PlatformIntrinsic
                            && self.tcx.sess.target.simd_types_indirect =>
                    {
                        arg.make_indirect();
                        return;
                    }

                    _ => return,
                }

                let size = arg.layout.size;
                if arg.layout.is_unsized() || size > Pointer.size(self) {
                    arg.make_indirect();
                } else {
                    // We want to pass small aggregates as immediates, but using
                    // a LLVM aggregate type for this leads to bad optimizations,
                    // so we pick an appropriately sized integer type instead.
                    arg.cast_to(Reg { kind: RegKind::Integer, size });
                }
            };
            fixup(&mut fn_abi.ret);
            for arg in fn_abi.args.iter_mut() {
                fixup(arg);
            }
        } else {
            fn_abi.adjust_for_foreign_abi(self, abi)?;
        }

        Ok(())
    }
}

#[tracing::instrument(level = "debug", skip(cx))]
fn make_thin_self_ptr<'tcx>(
    cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>),
    layout: TyAndLayout<'tcx>,
) -> TyAndLayout<'tcx> {
    let tcx = cx.tcx();
    let fat_pointer_ty = if layout.is_unsized() {
        // unsized `self` is passed as a pointer to `self`
        // FIXME (mikeyhew) change this to use &own if it is ever added to the language
        tcx.mk_mut_ptr(layout.ty)
    } else {
        match layout.abi {
            Abi::ScalarPair(..) | Abi::Scalar(..) => (),
            _ => bug!("receiver type has unsupported layout: {:?}", layout),
        }

        // In the case of Rc<Self>, we need to explicitly pass a *mut RcBox<Self>
        // with a Scalar (not ScalarPair) ABI. This is a hack that is understood
        // elsewhere in the compiler as a method on a `dyn Trait`.
        // To get the type `*mut RcBox<Self>`, we just keep unwrapping newtypes until we
        // get a built-in pointer type
        let mut fat_pointer_layout = layout;
        'descend_newtypes: while !fat_pointer_layout.ty.is_unsafe_ptr()
            && !fat_pointer_layout.ty.is_region_ptr()
        {
            for i in 0..fat_pointer_layout.fields.count() {
                let field_layout = fat_pointer_layout.field(cx, i);

                if !field_layout.is_zst() {
                    fat_pointer_layout = field_layout;
                    continue 'descend_newtypes;
                }
            }

            bug!("receiver has no non-zero-sized fields {:?}", fat_pointer_layout);
        }

        fat_pointer_layout.ty
    };

    // we now have a type like `*mut RcBox<dyn Trait>`
    // change its layout to that of `*mut ()`, a thin pointer, but keep the same type
    // this is understood as a special case elsewhere in the compiler
    let unit_ptr_ty = tcx.mk_mut_ptr(tcx.mk_unit());

    TyAndLayout {
        ty: fat_pointer_ty,

        // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing the `Result`
        // should always work because the type is always `*mut ()`.
        ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap()
    }
}