1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
pub use self::def_id_forest::DefIdForest;
use crate::ty;
use crate::ty::context::TyCtxt;
use crate::ty::{AdtDef, FieldDef, Ty, VariantDef};
use crate::ty::{AdtKind, Visibility};
use crate::ty::{DefId, SubstsRef};
use rustc_type_ir::sty::TyKind::*;
mod def_id_forest;
// The methods in this module calculate `DefIdForest`s of modules in which an
// `AdtDef`/`VariantDef`/`FieldDef` is visibly uninhabited.
//
// # Example
// ```rust
// enum Void {}
// mod a {
// pub mod b {
// pub struct SecretlyUninhabited {
// _priv: !,
// }
// }
// }
//
// mod c {
// pub struct AlsoSecretlyUninhabited {
// _priv: Void,
// }
// mod d {
// }
// }
//
// struct Foo {
// x: a::b::SecretlyUninhabited,
// y: c::AlsoSecretlyUninhabited,
// }
// ```
// In this code, the type `Foo` will only be visibly uninhabited inside the
// modules `b`, `c` and `d`. Calling `uninhabited_from` on `Foo` or its `AdtDef` will
// return the forest of modules {`b`, `c`->`d`} (represented in a `DefIdForest` by the
// set {`b`, `c`}).
//
// We need this information for pattern-matching on `Foo` or types that contain
// `Foo`.
//
// # Example
// ```rust
// let foo_result: Result<T, Foo> = ... ;
// let Ok(t) = foo_result;
// ```
// This code should only compile in modules where the uninhabitedness of `Foo` is
// visible.
impl<'tcx> TyCtxt<'tcx> {
/// Checks whether a type is visibly uninhabited from a particular module.
///
/// # Example
/// ```
/// #![feature(never_type)]
/// # fn main() {}
/// enum Void {}
/// mod a {
/// pub mod b {
/// pub struct SecretlyUninhabited {
/// _priv: !,
/// }
/// }
/// }
///
/// mod c {
/// use super::Void;
/// pub struct AlsoSecretlyUninhabited {
/// _priv: Void,
/// }
/// mod d {
/// }
/// }
///
/// struct Foo {
/// x: a::b::SecretlyUninhabited,
/// y: c::AlsoSecretlyUninhabited,
/// }
/// ```
/// In this code, the type `Foo` will only be visibly uninhabited inside the
/// modules b, c and d. This effects pattern-matching on `Foo` or types that
/// contain `Foo`.
///
/// # Example
/// ```ignore (illustrative)
/// let foo_result: Result<T, Foo> = ... ;
/// let Ok(t) = foo_result;
/// ```
/// This code should only compile in modules where the uninhabitedness of Foo is
/// visible.
pub fn is_ty_uninhabited_from(
self,
module: DefId,
ty: Ty<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
// To check whether this type is uninhabited at all (not just from the
// given node), you could check whether the forest is empty.
// ```
// forest.is_empty()
// ```
ty.uninhabited_from(self, param_env).contains(self, module)
}
}
impl<'tcx> AdtDef<'tcx> {
/// Calculates the forest of `DefId`s from which this ADT is visibly uninhabited.
fn uninhabited_from(
self,
tcx: TyCtxt<'tcx>,
substs: SubstsRef<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> DefIdForest<'tcx> {
// Non-exhaustive ADTs from other crates are always considered inhabited.
if self.is_variant_list_non_exhaustive() && !self.did().is_local() {
DefIdForest::empty()
} else {
DefIdForest::intersection(
tcx,
self.variants()
.iter()
.map(|v| v.uninhabited_from(tcx, substs, self.adt_kind(), param_env)),
)
}
}
}
impl<'tcx> VariantDef {
/// Calculates the forest of `DefId`s from which this variant is visibly uninhabited.
pub fn uninhabited_from(
&self,
tcx: TyCtxt<'tcx>,
substs: SubstsRef<'tcx>,
adt_kind: AdtKind,
param_env: ty::ParamEnv<'tcx>,
) -> DefIdForest<'tcx> {
let is_enum = match adt_kind {
// For now, `union`s are never considered uninhabited.
// The precise semantics of inhabitedness with respect to unions is currently undecided.
AdtKind::Union => return DefIdForest::empty(),
AdtKind::Enum => true,
AdtKind::Struct => false,
};
// Non-exhaustive variants from other crates are always considered inhabited.
if self.is_field_list_non_exhaustive() && !self.def_id.is_local() {
DefIdForest::empty()
} else {
DefIdForest::union(
tcx,
self.fields.iter().map(|f| f.uninhabited_from(tcx, substs, is_enum, param_env)),
)
}
}
}
impl<'tcx> FieldDef {
/// Calculates the forest of `DefId`s from which this field is visibly uninhabited.
fn uninhabited_from(
&self,
tcx: TyCtxt<'tcx>,
substs: SubstsRef<'tcx>,
is_enum: bool,
param_env: ty::ParamEnv<'tcx>,
) -> DefIdForest<'tcx> {
let data_uninhabitedness = move || self.ty(tcx, substs).uninhabited_from(tcx, param_env);
if is_enum {
data_uninhabitedness()
} else {
match self.vis {
Visibility::Restricted(from) => {
let forest = DefIdForest::from_id(from);
let iter = Some(forest).into_iter().chain(Some(data_uninhabitedness()));
DefIdForest::intersection(tcx, iter)
}
Visibility::Public => data_uninhabitedness(),
}
}
}
}
impl<'tcx> Ty<'tcx> {
/// Calculates the forest of `DefId`s from which this type is visibly uninhabited.
fn uninhabited_from(
self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> DefIdForest<'tcx> {
tcx.type_uninhabited_from(param_env.and(self))
}
}
// Query provider for `type_uninhabited_from`.
pub(crate) fn type_uninhabited_from<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> DefIdForest<'tcx> {
let ty = key.value;
let param_env = key.param_env;
match *ty.kind() {
Adt(def, substs) => def.uninhabited_from(tcx, substs, param_env),
Never => DefIdForest::full(),
Tuple(ref tys) => {
DefIdForest::union(tcx, tys.iter().map(|ty| ty.uninhabited_from(tcx, param_env)))
}
Array(ty, len) => match len.try_eval_usize(tcx, param_env) {
Some(0) | None => DefIdForest::empty(),
// If the array is definitely non-empty, it's uninhabited if
// the type of its elements is uninhabited.
Some(1..) => ty.uninhabited_from(tcx, param_env),
},
// References to uninitialised memory are valid for any type, including
// uninhabited types, in unsafe code, so we treat all references as
// inhabited.
// The precise semantics of inhabitedness with respect to references is currently
// undecided.
Ref(..) => DefIdForest::empty(),
_ => DefIdForest::empty(),
}
}