1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
use crate::ty::{self, Ty, TyCtxt};
use rustc_data_structures::unify::{NoError, UnifyKey, UnifyValue};
use rustc_span::def_id::DefId;
use rustc_span::symbol::Symbol;
use rustc_span::Span;
use std::cmp;
use std::marker::PhantomData;

pub trait ToType {
    fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
}

#[derive(PartialEq, Copy, Clone, Debug)]
pub struct UnifiedRegion<'tcx>(pub Option<ty::Region<'tcx>>);

#[derive(PartialEq, Copy, Clone, Debug)]
pub struct RegionVidKey<'tcx> {
    pub vid: ty::RegionVid,
    pub phantom: PhantomData<UnifiedRegion<'tcx>>,
}

impl<'tcx> From<ty::RegionVid> for RegionVidKey<'tcx> {
    fn from(vid: ty::RegionVid) -> Self {
        RegionVidKey { vid, phantom: PhantomData }
    }
}

impl<'tcx> UnifyKey for RegionVidKey<'tcx> {
    type Value = UnifiedRegion<'tcx>;
    #[inline]
    fn index(&self) -> u32 {
        self.vid.as_u32()
    }
    #[inline]
    fn from_index(i: u32) -> Self {
        RegionVidKey::from(ty::RegionVid::from_u32(i))
    }
    fn tag() -> &'static str {
        "RegionVidKey"
    }
}

impl<'tcx> UnifyValue for UnifiedRegion<'tcx> {
    type Error = NoError;

    fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
        Ok(match (value1.0, value2.0) {
            // Here we can just pick one value, because the full constraints graph
            // will be handled later. Ideally, we might want a `MultipleValues`
            // variant or something. For now though, this is fine.
            (Some(_), Some(_)) => *value1,

            (Some(_), _) => *value1,
            (_, Some(_)) => *value2,

            (None, None) => *value1,
        })
    }
}

impl ToType for ty::IntVarValue {
    fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match *self {
            ty::IntType(i) => tcx.mk_mach_int(i),
            ty::UintType(i) => tcx.mk_mach_uint(i),
        }
    }
}

impl ToType for ty::FloatVarValue {
    fn to_type<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        tcx.mk_mach_float(self.0)
    }
}

// Generic consts.

#[derive(Copy, Clone, Debug)]
pub struct ConstVariableOrigin {
    pub kind: ConstVariableOriginKind,
    pub span: Span,
}

/// Reasons to create a const inference variable
#[derive(Copy, Clone, Debug)]
pub enum ConstVariableOriginKind {
    MiscVariable,
    ConstInference,
    ConstParameterDefinition(Symbol, DefId),
    SubstitutionPlaceholder,
}

#[derive(Copy, Clone, Debug)]
pub enum ConstVariableValue<'tcx> {
    Known { value: ty::Const<'tcx> },
    Unknown { universe: ty::UniverseIndex },
}

impl<'tcx> ConstVariableValue<'tcx> {
    /// If this value is known, returns the const it is known to be.
    /// Otherwise, `None`.
    pub fn known(&self) -> Option<ty::Const<'tcx>> {
        match *self {
            ConstVariableValue::Unknown { .. } => None,
            ConstVariableValue::Known { value } => Some(value),
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub struct ConstVarValue<'tcx> {
    pub origin: ConstVariableOrigin,
    pub val: ConstVariableValue<'tcx>,
}

impl<'tcx> UnifyKey for ty::ConstVid<'tcx> {
    type Value = ConstVarValue<'tcx>;
    #[inline]
    fn index(&self) -> u32 {
        self.index
    }
    #[inline]
    fn from_index(i: u32) -> Self {
        ty::ConstVid { index: i, phantom: PhantomData }
    }
    fn tag() -> &'static str {
        "ConstVid"
    }
}

impl<'tcx> UnifyValue for ConstVarValue<'tcx> {
    type Error = (ty::Const<'tcx>, ty::Const<'tcx>);

    fn unify_values(&value1: &Self, &value2: &Self) -> Result<Self, Self::Error> {
        Ok(match (value1.val, value2.val) {
            (ConstVariableValue::Known { .. }, ConstVariableValue::Known { .. }) => {
                bug!("equating two const variables, both of which have known values")
            }

            // If one side is known, prefer that one.
            (ConstVariableValue::Known { .. }, ConstVariableValue::Unknown { .. }) => value1,
            (ConstVariableValue::Unknown { .. }, ConstVariableValue::Known { .. }) => value2,

            // If both sides are *unknown*, it hardly matters, does it?
            (
                ConstVariableValue::Unknown { universe: universe1 },
                ConstVariableValue::Unknown { universe: universe2 },
            ) => {
                // If we unify two unbound variables, ?T and ?U, then whatever
                // value they wind up taking (which must be the same value) must
                // be nameable by both universes. Therefore, the resulting
                // universe is the minimum of the two universes, because that is
                // the one which contains the fewest names in scope.
                let universe = cmp::min(universe1, universe2);
                ConstVarValue {
                    val: ConstVariableValue::Unknown { universe },
                    origin: value1.origin,
                }
            }
        })
    }
}