1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
//! Nodes in the dependency graph.
//!
//! A node in the [dependency graph] is represented by a [`DepNode`].
//! A `DepNode` consists of a [`DepKind`] (which
//! specifies the kind of thing it represents, like a piece of HIR, MIR, etc.)
//! and a [`Fingerprint`], a 128-bit hash value, the exact meaning of which
//! depends on the node's `DepKind`. Together, the kind and the fingerprint
//! fully identify a dependency node, even across multiple compilation sessions.
//! In other words, the value of the fingerprint does not depend on anything
//! that is specific to a given compilation session, like an unpredictable
//! interning key (e.g., `NodeId`, `DefId`, `Symbol`) or the numeric value of a
//! pointer. The concept behind this could be compared to how git commit hashes
//! uniquely identify a given commit. The fingerprinting approach has
//! a few advantages:
//!
//! * A `DepNode` can simply be serialized to disk and loaded in another session
//!   without the need to do any "rebasing" (like we have to do for Spans and
//!   NodeIds) or "retracing" (like we had to do for `DefId` in earlier
//!   implementations of the dependency graph).
//! * A `Fingerprint` is just a bunch of bits, which allows `DepNode` to
//!   implement `Copy`, `Sync`, `Send`, `Freeze`, etc.
//! * Since we just have a bit pattern, `DepNode` can be mapped from disk into
//!   memory without any post-processing (e.g., "abomination-style" pointer
//!   reconstruction).
//! * Because a `DepNode` is self-contained, we can instantiate `DepNodes` that
//!   refer to things that do not exist anymore. In previous implementations
//!   `DepNode` contained a `DefId`. A `DepNode` referring to something that
//!   had been removed between the previous and the current compilation session
//!   could not be instantiated because the current compilation session
//!   contained no `DefId` for thing that had been removed.
//!
//! `DepNode` definition happens in the `define_dep_nodes!()` macro. This macro
//! defines the `DepKind` enum. Each `DepKind` has its own parameters that are
//! needed at runtime in order to construct a valid `DepNode` fingerprint.
//! However, only `CompileCodegenUnit` and `CompileMonoItem` are constructed
//! explicitly (with `make_compile_codegen_unit` cq `make_compile_mono_item`).
//!
//! Because the macro sees what parameters a given `DepKind` requires, it can
//! "infer" some properties for each kind of `DepNode`:
//!
//! * Whether a `DepNode` of a given kind has any parameters at all. Some
//!   `DepNode`s could represent global concepts with only one value.
//! * Whether it is possible, in principle, to reconstruct a query key from a
//!   given `DepNode`. Many `DepKind`s only require a single `DefId` parameter,
//!   in which case it is possible to map the node's fingerprint back to the
//!   `DefId` it was computed from. In other cases, too much information gets
//!   lost during fingerprint computation.
//!
//! `make_compile_codegen_unit` and `make_compile_mono_items`, together with
//! `DepNode::new()`, ensures that only valid `DepNode` instances can be
//! constructed. For example, the API does not allow for constructing
//! parameterless `DepNode`s with anything other than a zeroed out fingerprint.
//! More generally speaking, it relieves the user of the `DepNode` API of
//! having to know how to compute the expected fingerprint for a given set of
//! node parameters.
//!
//! [dependency graph]: https://rustc-dev-guide.rust-lang.org/query.html

use crate::mir::mono::MonoItem;
use crate::ty::TyCtxt;

use rustc_data_structures::fingerprint::Fingerprint;
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId};
use rustc_hir::definitions::DefPathHash;
use rustc_hir::{HirId, ItemLocalId};
use rustc_query_system::dep_graph::FingerprintStyle;
use rustc_span::symbol::Symbol;
use std::hash::Hash;

pub use rustc_query_system::dep_graph::{DepContext, DepNodeParams};

/// This struct stores metadata about each DepKind.
///
/// Information is retrieved by indexing the `DEP_KINDS` array using the integer value
/// of the `DepKind`. Overall, this allows to implement `DepContext` using this manual
/// jump table instead of large matches.
pub struct DepKindStruct<'tcx> {
    /// Anonymous queries cannot be replayed from one compiler invocation to the next.
    /// When their result is needed, it is recomputed. They are useful for fine-grained
    /// dependency tracking, and caching within one compiler invocation.
    pub is_anon: bool,

    /// Eval-always queries do not track their dependencies, and are always recomputed, even if
    /// their inputs have not changed since the last compiler invocation. The result is still
    /// cached within one compiler invocation.
    pub is_eval_always: bool,

    /// Whether the query key can be recovered from the hashed fingerprint.
    /// See [DepNodeParams] trait for the behaviour of each key type.
    pub fingerprint_style: FingerprintStyle,

    /// The red/green evaluation system will try to mark a specific DepNode in the
    /// dependency graph as green by recursively trying to mark the dependencies of
    /// that `DepNode` as green. While doing so, it will sometimes encounter a `DepNode`
    /// where we don't know if it is red or green and we therefore actually have
    /// to recompute its value in order to find out. Since the only piece of
    /// information that we have at that point is the `DepNode` we are trying to
    /// re-evaluate, we need some way to re-run a query from just that. This is what
    /// `force_from_dep_node()` implements.
    ///
    /// In the general case, a `DepNode` consists of a `DepKind` and an opaque
    /// GUID/fingerprint that will uniquely identify the node. This GUID/fingerprint
    /// is usually constructed by computing a stable hash of the query-key that the
    /// `DepNode` corresponds to. Consequently, it is not in general possible to go
    /// back from hash to query-key (since hash functions are not reversible). For
    /// this reason `force_from_dep_node()` is expected to fail from time to time
    /// because we just cannot find out, from the `DepNode` alone, what the
    /// corresponding query-key is and therefore cannot re-run the query.
    ///
    /// The system deals with this case letting `try_mark_green` fail which forces
    /// the root query to be re-evaluated.
    ///
    /// Now, if `force_from_dep_node()` would always fail, it would be pretty useless.
    /// Fortunately, we can use some contextual information that will allow us to
    /// reconstruct query-keys for certain kinds of `DepNode`s. In particular, we
    /// enforce by construction that the GUID/fingerprint of certain `DepNode`s is a
    /// valid `DefPathHash`. Since we also always build a huge table that maps every
    /// `DefPathHash` in the current codebase to the corresponding `DefId`, we have
    /// everything we need to re-run the query.
    ///
    /// Take the `mir_promoted` query as an example. Like many other queries, it
    /// just has a single parameter: the `DefId` of the item it will compute the
    /// validated MIR for. Now, when we call `force_from_dep_node()` on a `DepNode`
    /// with kind `MirValidated`, we know that the GUID/fingerprint of the `DepNode`
    /// is actually a `DefPathHash`, and can therefore just look up the corresponding
    /// `DefId` in `tcx.def_path_hash_to_def_id`.
    pub force_from_dep_node: Option<fn(tcx: TyCtxt<'tcx>, dep_node: DepNode) -> bool>,

    /// Invoke a query to put the on-disk cached value in memory.
    pub try_load_from_on_disk_cache: Option<fn(TyCtxt<'tcx>, DepNode)>,
}

impl DepKind {
    #[inline(always)]
    pub fn fingerprint_style(self, tcx: TyCtxt<'_>) -> FingerprintStyle {
        // Only fetch the DepKindStruct once.
        let data = tcx.query_kind(self);
        if data.is_anon {
            return FingerprintStyle::Opaque;
        }
        data.fingerprint_style
    }
}

macro_rules! define_dep_nodes {
    (
     $($(#[$attr:meta])*
        [$($modifiers:tt)*] fn $variant:ident($($K:tt)*) -> $V:ty,)*) => {

        #[macro_export]
        macro_rules! make_dep_kind_array {
            ($mod:ident) => {[ $($mod::$variant()),* ]};
        }

        /// This enum serves as an index into arrays built by `make_dep_kind_array`.
        #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Encodable, Decodable)]
        #[allow(non_camel_case_types)]
        pub enum DepKind {
            $( $( #[$attr] )* $variant),*
        }

        fn dep_kind_from_label_string(label: &str) -> Result<DepKind, ()> {
            match label {
                $(stringify!($variant) => Ok(DepKind::$variant),)*
                _ => Err(()),
            }
        }

        /// Contains variant => str representations for constructing
        /// DepNode groups for tests.
        #[allow(dead_code, non_upper_case_globals)]
        pub mod label_strs {
           $(
                pub const $variant: &str = stringify!($variant);
            )*
        }
    };
}

rustc_query_append!(define_dep_nodes![
    /// We use this for most things when incr. comp. is turned off.
    [] fn Null() -> (),
    /// We use this to create a forever-red node.
    [] fn Red() -> (),
    [] fn TraitSelect() -> (),
    [] fn CompileCodegenUnit() -> (),
    [] fn CompileMonoItem() -> (),
]);

// WARNING: `construct` is generic and does not know that `CompileCodegenUnit` takes `Symbol`s as keys.
// Be very careful changing this type signature!
pub(crate) fn make_compile_codegen_unit(tcx: TyCtxt<'_>, name: Symbol) -> DepNode {
    DepNode::construct(tcx, DepKind::CompileCodegenUnit, &name)
}

// WARNING: `construct` is generic and does not know that `CompileMonoItem` takes `MonoItem`s as keys.
// Be very careful changing this type signature!
pub(crate) fn make_compile_mono_item<'tcx>(
    tcx: TyCtxt<'tcx>,
    mono_item: &MonoItem<'tcx>,
) -> DepNode {
    DepNode::construct(tcx, DepKind::CompileMonoItem, mono_item)
}

pub type DepNode = rustc_query_system::dep_graph::DepNode<DepKind>;

// We keep a lot of `DepNode`s in memory during compilation. It's not
// required that their size stay the same, but we don't want to change
// it inadvertently. This assert just ensures we're aware of any change.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
static_assert_size!(DepNode, 18);

#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
static_assert_size!(DepNode, 24);

pub trait DepNodeExt: Sized {
    /// Construct a DepNode from the given DepKind and DefPathHash. This
    /// method will assert that the given DepKind actually requires a
    /// single DefId/DefPathHash parameter.
    fn from_def_path_hash(tcx: TyCtxt<'_>, def_path_hash: DefPathHash, kind: DepKind) -> Self;

    /// Extracts the DefId corresponding to this DepNode. This will work
    /// if two conditions are met:
    ///
    /// 1. The Fingerprint of the DepNode actually is a DefPathHash, and
    /// 2. the item that the DefPath refers to exists in the current tcx.
    ///
    /// Condition (1) is determined by the DepKind variant of the
    /// DepNode. Condition (2) might not be fulfilled if a DepNode
    /// refers to something from the previous compilation session that
    /// has been removed.
    fn extract_def_id(&self, tcx: TyCtxt<'_>) -> Option<DefId>;

    /// Used in testing
    fn from_label_string(
        tcx: TyCtxt<'_>,
        label: &str,
        def_path_hash: DefPathHash,
    ) -> Result<Self, ()>;

    /// Used in testing
    fn has_label_string(label: &str) -> bool;
}

impl DepNodeExt for DepNode {
    /// Construct a DepNode from the given DepKind and DefPathHash. This
    /// method will assert that the given DepKind actually requires a
    /// single DefId/DefPathHash parameter.
    fn from_def_path_hash(tcx: TyCtxt<'_>, def_path_hash: DefPathHash, kind: DepKind) -> DepNode {
        debug_assert!(kind.fingerprint_style(tcx) == FingerprintStyle::DefPathHash);
        DepNode { kind, hash: def_path_hash.0.into() }
    }

    /// Extracts the DefId corresponding to this DepNode. This will work
    /// if two conditions are met:
    ///
    /// 1. The Fingerprint of the DepNode actually is a DefPathHash, and
    /// 2. the item that the DefPath refers to exists in the current tcx.
    ///
    /// Condition (1) is determined by the DepKind variant of the
    /// DepNode. Condition (2) might not be fulfilled if a DepNode
    /// refers to something from the previous compilation session that
    /// has been removed.
    fn extract_def_id<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Option<DefId> {
        if self.kind.fingerprint_style(tcx) == FingerprintStyle::DefPathHash {
            Some(tcx.def_path_hash_to_def_id(DefPathHash(self.hash.into()), &mut || {
                panic!("Failed to extract DefId: {:?} {}", self.kind, self.hash)
            }))
        } else {
            None
        }
    }

    /// Used in testing
    fn from_label_string(
        tcx: TyCtxt<'_>,
        label: &str,
        def_path_hash: DefPathHash,
    ) -> Result<DepNode, ()> {
        let kind = dep_kind_from_label_string(label)?;

        match kind.fingerprint_style(tcx) {
            FingerprintStyle::Opaque | FingerprintStyle::HirId => Err(()),
            FingerprintStyle::Unit => Ok(DepNode::new_no_params(tcx, kind)),
            FingerprintStyle::DefPathHash => {
                Ok(DepNode::from_def_path_hash(tcx, def_path_hash, kind))
            }
        }
    }

    /// Used in testing
    fn has_label_string(label: &str) -> bool {
        dep_kind_from_label_string(label).is_ok()
    }
}

impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for () {
    #[inline(always)]
    fn fingerprint_style() -> FingerprintStyle {
        FingerprintStyle::Unit
    }

    #[inline(always)]
    fn to_fingerprint(&self, _: TyCtxt<'tcx>) -> Fingerprint {
        Fingerprint::ZERO
    }

    #[inline(always)]
    fn recover(_: TyCtxt<'tcx>, _: &DepNode) -> Option<Self> {
        Some(())
    }
}

impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for DefId {
    #[inline(always)]
    fn fingerprint_style() -> FingerprintStyle {
        FingerprintStyle::DefPathHash
    }

    #[inline(always)]
    fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
        tcx.def_path_hash(*self).0
    }

    #[inline(always)]
    fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
        tcx.def_path_str(*self)
    }

    #[inline(always)]
    fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
        dep_node.extract_def_id(tcx)
    }
}

impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for LocalDefId {
    #[inline(always)]
    fn fingerprint_style() -> FingerprintStyle {
        FingerprintStyle::DefPathHash
    }

    #[inline(always)]
    fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
        self.to_def_id().to_fingerprint(tcx)
    }

    #[inline(always)]
    fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
        self.to_def_id().to_debug_str(tcx)
    }

    #[inline(always)]
    fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
        dep_node.extract_def_id(tcx).map(|id| id.expect_local())
    }
}

impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for CrateNum {
    #[inline(always)]
    fn fingerprint_style() -> FingerprintStyle {
        FingerprintStyle::DefPathHash
    }

    #[inline(always)]
    fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
        let def_id = self.as_def_id();
        def_id.to_fingerprint(tcx)
    }

    #[inline(always)]
    fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
        tcx.crate_name(*self).to_string()
    }

    #[inline(always)]
    fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
        dep_node.extract_def_id(tcx).map(|id| id.krate)
    }
}

impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for (DefId, DefId) {
    #[inline(always)]
    fn fingerprint_style() -> FingerprintStyle {
        FingerprintStyle::Opaque
    }

    // We actually would not need to specialize the implementation of this
    // method but it's faster to combine the hashes than to instantiate a full
    // hashing context and stable-hashing state.
    #[inline(always)]
    fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
        let (def_id_0, def_id_1) = *self;

        let def_path_hash_0 = tcx.def_path_hash(def_id_0);
        let def_path_hash_1 = tcx.def_path_hash(def_id_1);

        def_path_hash_0.0.combine(def_path_hash_1.0)
    }

    #[inline(always)]
    fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
        let (def_id_0, def_id_1) = *self;

        format!("({}, {})", tcx.def_path_debug_str(def_id_0), tcx.def_path_debug_str(def_id_1))
    }
}

impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for HirId {
    #[inline(always)]
    fn fingerprint_style() -> FingerprintStyle {
        FingerprintStyle::HirId
    }

    // We actually would not need to specialize the implementation of this
    // method but it's faster to combine the hashes than to instantiate a full
    // hashing context and stable-hashing state.
    #[inline(always)]
    fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
        let HirId { owner, local_id } = *self;
        let def_path_hash = tcx.def_path_hash(owner.to_def_id());
        Fingerprint::new(
            // `owner` is local, so is completely defined by the local hash
            def_path_hash.local_hash(),
            local_id.as_u32().into(),
        )
    }

    #[inline(always)]
    fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
        let HirId { owner, local_id } = *self;
        format!("{}.{}", tcx.def_path_str(owner.to_def_id()), local_id.as_u32())
    }

    #[inline(always)]
    fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
        if dep_node.kind.fingerprint_style(tcx) == FingerprintStyle::HirId {
            let (local_hash, local_id) = Fingerprint::from(dep_node.hash).as_value();
            let def_path_hash = DefPathHash::new(tcx.sess.local_stable_crate_id(), local_hash);
            let owner = tcx
                .def_path_hash_to_def_id(def_path_hash, &mut || {
                    panic!("Failed to extract HirId: {:?} {}", dep_node.kind, dep_node.hash)
                })
                .expect_local();
            let local_id = local_id
                .try_into()
                .unwrap_or_else(|_| panic!("local id should be u32, found {:?}", local_id));
            Some(HirId { owner, local_id: ItemLocalId::from_u32(local_id) })
        } else {
            None
        }
    }
}