1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
use std::cmp::Ord;
use crate::graph::{DirectedGraph, GraphSuccessors, WithNumEdges, WithNumNodes, WithSuccessors};
use rustc_index::vec::{Idx, IndexVec};
#[cfg(test)]
mod tests;
pub struct VecGraph<N: Idx> {
/// Maps from a given node to an index where the set of successors
/// for that node starts. The index indexes into the `edges`
/// vector. To find the range for a given node, we look up the
/// start for that node and then the start for the next node
/// (i.e., with an index 1 higher) and get the range between the
/// two. This vector always has an extra entry so that this works
/// even for the max element.
node_starts: IndexVec<N, usize>,
edge_targets: Vec<N>,
}
impl<N: Idx + Ord> VecGraph<N> {
pub fn new(num_nodes: usize, mut edge_pairs: Vec<(N, N)>) -> Self {
// Sort the edges by the source -- this is important.
edge_pairs.sort();
let num_edges = edge_pairs.len();
// Store the *target* of each edge into `edge_targets`.
let edge_targets: Vec<N> = edge_pairs.iter().map(|&(_, target)| target).collect();
// Create the *edge starts* array. We are iterating over over
// the (sorted) edge pairs. We maintain the invariant that the
// length of the `node_starts` array is enough to store the
// current source node -- so when we see that the source node
// for an edge is greater than the current length, we grow the
// edge-starts array by just enough.
let mut node_starts = IndexVec::with_capacity(num_edges);
for (index, &(source, _)) in edge_pairs.iter().enumerate() {
// If we have a list like `[(0, x), (2, y)]`:
//
// - Start out with `node_starts` of `[]`
// - Iterate to `(0, x)` at index 0:
// - Push one entry because `node_starts.len()` (0) is <= the source (0)
// - Leaving us with `node_starts` of `[0]`
// - Iterate to `(2, y)` at index 1:
// - Push one entry because `node_starts.len()` (1) is <= the source (2)
// - Push one entry because `node_starts.len()` (2) is <= the source (2)
// - Leaving us with `node_starts` of `[0, 1, 1]`
// - Loop terminates
while node_starts.len() <= source.index() {
node_starts.push(index);
}
}
// Pad out the `node_starts` array so that it has `num_nodes +
// 1` entries. Continuing our example above, if `num_nodes` is
// be `3`, we would push one more index: `[0, 1, 1, 2]`.
//
// Interpretation of that vector:
//
// [0, 1, 1, 2]
// ---- range for N=2
// ---- range for N=1
// ---- range for N=0
while node_starts.len() <= num_nodes {
node_starts.push(edge_targets.len());
}
assert_eq!(node_starts.len(), num_nodes + 1);
Self { node_starts, edge_targets }
}
/// Gets the successors for `source` as a slice.
pub fn successors(&self, source: N) -> &[N] {
let start_index = self.node_starts[source];
let end_index = self.node_starts[source.plus(1)];
&self.edge_targets[start_index..end_index]
}
}
impl<N: Idx> DirectedGraph for VecGraph<N> {
type Node = N;
}
impl<N: Idx> WithNumNodes for VecGraph<N> {
fn num_nodes(&self) -> usize {
self.node_starts.len() - 1
}
}
impl<N: Idx> WithNumEdges for VecGraph<N> {
fn num_edges(&self) -> usize {
self.edge_targets.len()
}
}
impl<'graph, N: Idx> GraphSuccessors<'graph> for VecGraph<N> {
type Item = N;
type Iter = std::iter::Cloned<std::slice::Iter<'graph, N>>;
}
impl<N: Idx + Ord> WithSuccessors for VecGraph<N> {
fn successors(&self, node: N) -> <Self as GraphSuccessors<'_>>::Iter {
self.successors(node).iter().cloned()
}
}