1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
//! Check the validity invariant of a given value, and tell the user
//! where in the value it got violated.
//! In const context, this goes even further and tries to approximate const safety.
//! That's useful because it means other passes (e.g. promotion) can rely on `const`s
//! to be const-safe.
use std::convert::TryFrom;
use std::fmt::{Display, Write};
use std::num::NonZeroUsize;
use rustc_ast::Mutability;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_middle::mir::interpret::InterpError;
use rustc_middle::ty;
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_span::symbol::{sym, Symbol};
use rustc_span::DUMMY_SP;
use rustc_target::abi::{Abi, Scalar as ScalarAbi, Size, VariantIdx, Variants, WrappingRange};
use std::hash::Hash;
// for the validation errors
use super::UndefinedBehaviorInfo::*;
use super::{
CheckInAllocMsg, GlobalAlloc, ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy, Machine,
MemPlaceMeta, OpTy, Scalar, ValueVisitor,
};
macro_rules! throw_validation_failure {
($where:expr, { $( $what_fmt:expr ),+ } $( expected { $( $expected_fmt:expr ),+ } )?) => {{
let mut msg = String::new();
msg.push_str("encountered ");
write!(&mut msg, $($what_fmt),+).unwrap();
$(
msg.push_str(", but expected ");
write!(&mut msg, $($expected_fmt),+).unwrap();
)?
let path = rustc_middle::ty::print::with_no_trimmed_paths!({
let where_ = &$where;
if !where_.is_empty() {
let mut path = String::new();
write_path(&mut path, where_);
Some(path)
} else {
None
}
});
throw_ub!(ValidationFailure { path, msg })
}};
}
/// If $e throws an error matching the pattern, throw a validation failure.
/// Other errors are passed back to the caller, unchanged -- and if they reach the root of
/// the visitor, we make sure only validation errors and `InvalidProgram` errors are left.
/// This lets you use the patterns as a kind of validation list, asserting which errors
/// can possibly happen:
///
/// ```
/// let v = try_validation!(some_fn(), some_path, {
/// Foo | Bar | Baz => { "some failure" },
/// });
/// ```
///
/// The patterns must be of type `UndefinedBehaviorInfo`.
/// An additional expected parameter can also be added to the failure message:
///
/// ```
/// let v = try_validation!(some_fn(), some_path, {
/// Foo | Bar | Baz => { "some failure" } expected { "something that wasn't a failure" },
/// });
/// ```
///
/// An additional nicety is that both parameters actually take format args, so you can just write
/// the format string in directly:
///
/// ```
/// let v = try_validation!(some_fn(), some_path, {
/// Foo | Bar | Baz => { "{:?}", some_failure } expected { "{}", expected_value },
/// });
/// ```
///
macro_rules! try_validation {
($e:expr, $where:expr,
$( $( $p:pat_param )|+ => { $( $what_fmt:expr ),+ } $( expected { $( $expected_fmt:expr ),+ } )? ),+ $(,)?
) => {{
match $e {
Ok(x) => x,
// We catch the error and turn it into a validation failure. We are okay with
// allocation here as this can only slow down builds that fail anyway.
Err(e) => match e.kind() {
$(
InterpError::UndefinedBehavior($($p)|+) =>
throw_validation_failure!(
$where,
{ $( $what_fmt ),+ } $( expected { $( $expected_fmt ),+ } )?
)
),+,
#[allow(unreachable_patterns)]
_ => Err::<!, _>(e)?,
}
}
}};
}
/// We want to show a nice path to the invalid field for diagnostics,
/// but avoid string operations in the happy case where no error happens.
/// So we track a `Vec<PathElem>` where `PathElem` contains all the data we
/// need to later print something for the user.
#[derive(Copy, Clone, Debug)]
pub enum PathElem {
Field(Symbol),
Variant(Symbol),
GeneratorState(VariantIdx),
CapturedVar(Symbol),
ArrayElem(usize),
TupleElem(usize),
Deref,
EnumTag,
GeneratorTag,
DynDowncast,
}
/// Extra things to check for during validation of CTFE results.
pub enum CtfeValidationMode {
/// Regular validation, nothing special happening.
Regular,
/// Validation of a `const`.
/// `inner` says if this is an inner, indirect allocation (as opposed to the top-level const
/// allocation). Being an inner allocation makes a difference because the top-level allocation
/// of a `const` is copied for each use, but the inner allocations are implicitly shared.
/// `allow_static_ptrs` says if pointers to statics are permitted (which is the case for promoteds in statics).
Const { inner: bool, allow_static_ptrs: bool },
}
/// State for tracking recursive validation of references
pub struct RefTracking<T, PATH = ()> {
pub seen: FxHashSet<T>,
pub todo: Vec<(T, PATH)>,
}
impl<T: Copy + Eq + Hash + std::fmt::Debug, PATH: Default> RefTracking<T, PATH> {
pub fn empty() -> Self {
RefTracking { seen: FxHashSet::default(), todo: vec![] }
}
pub fn new(op: T) -> Self {
let mut ref_tracking_for_consts =
RefTracking { seen: FxHashSet::default(), todo: vec![(op, PATH::default())] };
ref_tracking_for_consts.seen.insert(op);
ref_tracking_for_consts
}
pub fn track(&mut self, op: T, path: impl FnOnce() -> PATH) {
if self.seen.insert(op) {
trace!("Recursing below ptr {:#?}", op);
let path = path();
// Remember to come back to this later.
self.todo.push((op, path));
}
}
}
/// Format a path
fn write_path(out: &mut String, path: &[PathElem]) {
use self::PathElem::*;
for elem in path.iter() {
match elem {
Field(name) => write!(out, ".{}", name),
EnumTag => write!(out, ".<enum-tag>"),
Variant(name) => write!(out, ".<enum-variant({})>", name),
GeneratorTag => write!(out, ".<generator-tag>"),
GeneratorState(idx) => write!(out, ".<generator-state({})>", idx.index()),
CapturedVar(name) => write!(out, ".<captured-var({})>", name),
TupleElem(idx) => write!(out, ".{}", idx),
ArrayElem(idx) => write!(out, "[{}]", idx),
// `.<deref>` does not match Rust syntax, but it is more readable for long paths -- and
// some of the other items here also are not Rust syntax. Actually we can't
// even use the usual syntax because we are just showing the projections,
// not the root.
Deref => write!(out, ".<deref>"),
DynDowncast => write!(out, ".<dyn-downcast>"),
}
.unwrap()
}
}
// Formats such that a sentence like "expected something {}" to mean
// "expected something <in the given range>" makes sense.
fn wrapping_range_format(r: WrappingRange, max_hi: u128) -> String {
let WrappingRange { start: lo, end: hi } = r;
assert!(hi <= max_hi);
if lo > hi {
format!("less or equal to {}, or greater or equal to {}", hi, lo)
} else if lo == hi {
format!("equal to {}", lo)
} else if lo == 0 {
assert!(hi < max_hi, "should not be printing if the range covers everything");
format!("less or equal to {}", hi)
} else if hi == max_hi {
assert!(lo > 0, "should not be printing if the range covers everything");
format!("greater or equal to {}", lo)
} else {
format!("in the range {:?}", r)
}
}
struct ValidityVisitor<'rt, 'mir, 'tcx, M: Machine<'mir, 'tcx>> {
/// The `path` may be pushed to, but the part that is present when a function
/// starts must not be changed! `visit_fields` and `visit_array` rely on
/// this stack discipline.
path: Vec<PathElem>,
ref_tracking: Option<&'rt mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>>,
/// `None` indicates this is not validating for CTFE (but for runtime).
ctfe_mode: Option<CtfeValidationMode>,
ecx: &'rt InterpCx<'mir, 'tcx, M>,
}
impl<'rt, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValidityVisitor<'rt, 'mir, 'tcx, M> {
fn aggregate_field_path_elem(&mut self, layout: TyAndLayout<'tcx>, field: usize) -> PathElem {
// First, check if we are projecting to a variant.
match layout.variants {
Variants::Multiple { tag_field, .. } => {
if tag_field == field {
return match layout.ty.kind() {
ty::Adt(def, ..) if def.is_enum() => PathElem::EnumTag,
ty::Generator(..) => PathElem::GeneratorTag,
_ => bug!("non-variant type {:?}", layout.ty),
};
}
}
Variants::Single { .. } => {}
}
// Now we know we are projecting to a field, so figure out which one.
match layout.ty.kind() {
// generators and closures.
ty::Closure(def_id, _) | ty::Generator(def_id, _, _) => {
let mut name = None;
// FIXME this should be more descriptive i.e. CapturePlace instead of CapturedVar
// https://github.com/rust-lang/project-rfc-2229/issues/46
if let Some(local_def_id) = def_id.as_local() {
let tables = self.ecx.tcx.typeck(local_def_id);
if let Some(captured_place) =
tables.closure_min_captures_flattened(local_def_id).nth(field)
{
// Sometimes the index is beyond the number of upvars (seen
// for a generator).
let var_hir_id = captured_place.get_root_variable();
let node = self.ecx.tcx.hir().get(var_hir_id);
if let hir::Node::Pat(pat) = node {
if let hir::PatKind::Binding(_, _, ident, _) = pat.kind {
name = Some(ident.name);
}
}
}
}
PathElem::CapturedVar(name.unwrap_or_else(|| {
// Fall back to showing the field index.
sym::integer(field)
}))
}
// tuples
ty::Tuple(_) => PathElem::TupleElem(field),
// enums
ty::Adt(def, ..) if def.is_enum() => {
// we might be projecting *to* a variant, or to a field *in* a variant.
match layout.variants {
Variants::Single { index } => {
// Inside a variant
PathElem::Field(def.variant(index).fields[field].name)
}
Variants::Multiple { .. } => bug!("we handled variants above"),
}
}
// other ADTs
ty::Adt(def, _) => PathElem::Field(def.non_enum_variant().fields[field].name),
// arrays/slices
ty::Array(..) | ty::Slice(..) => PathElem::ArrayElem(field),
// dyn traits
ty::Dynamic(..) => PathElem::DynDowncast,
// nothing else has an aggregate layout
_ => bug!("aggregate_field_path_elem: got non-aggregate type {:?}", layout.ty),
}
}
fn with_elem<R>(
&mut self,
elem: PathElem,
f: impl FnOnce(&mut Self) -> InterpResult<'tcx, R>,
) -> InterpResult<'tcx, R> {
// Remember the old state
let path_len = self.path.len();
// Record new element
self.path.push(elem);
// Perform operation
let r = f(self)?;
// Undo changes
self.path.truncate(path_len);
// Done
Ok(r)
}
fn read_immediate(
&self,
op: &OpTy<'tcx, M::Provenance>,
expected: impl Display,
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
Ok(try_validation!(
self.ecx.read_immediate(op),
self.path,
InvalidUninitBytes(None) => { "uninitialized memory" } expected { "{expected}" }
))
}
fn read_scalar(
&self,
op: &OpTy<'tcx, M::Provenance>,
expected: impl Display,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
Ok(self.read_immediate(op, expected)?.to_scalar())
}
fn check_wide_ptr_meta(
&mut self,
meta: MemPlaceMeta<M::Provenance>,
pointee: TyAndLayout<'tcx>,
) -> InterpResult<'tcx> {
let tail = self.ecx.tcx.struct_tail_erasing_lifetimes(pointee.ty, self.ecx.param_env);
match tail.kind() {
ty::Dynamic(..) => {
let vtable = meta.unwrap_meta().to_pointer(self.ecx)?;
// Make sure it is a genuine vtable pointer.
let (_ty, _trait) = try_validation!(
self.ecx.get_ptr_vtable(vtable),
self.path,
DanglingIntPointer(..) |
InvalidVTablePointer(..) =>
{ "{vtable}" } expected { "a vtable pointer" },
);
// FIXME: check if the type/trait match what ty::Dynamic says?
}
ty::Slice(..) | ty::Str => {
let _len = meta.unwrap_meta().to_machine_usize(self.ecx)?;
// We do not check that `len * elem_size <= isize::MAX`:
// that is only required for references, and there it falls out of the
// "dereferenceable" check performed by Stacked Borrows.
}
ty::Foreign(..) => {
// Unsized, but not wide.
}
_ => bug!("Unexpected unsized type tail: {:?}", tail),
}
Ok(())
}
/// Check a reference or `Box`.
fn check_safe_pointer(
&mut self,
value: &OpTy<'tcx, M::Provenance>,
kind: &str,
) -> InterpResult<'tcx> {
let place =
self.ecx.ref_to_mplace(&self.read_immediate(value, format_args!("a {kind}"))?)?;
// Handle wide pointers.
// Check metadata early, for better diagnostics
if place.layout.is_unsized() {
self.check_wide_ptr_meta(place.meta, place.layout)?;
}
// Make sure this is dereferenceable and all.
let size_and_align = try_validation!(
self.ecx.size_and_align_of_mplace(&place),
self.path,
InvalidMeta(msg) => { "invalid {} metadata: {}", kind, msg },
);
let (size, align) = size_and_align
// for the purpose of validity, consider foreign types to have
// alignment and size determined by the layout (size will be 0,
// alignment should take attributes into account).
.unwrap_or_else(|| (place.layout.size, place.layout.align.abi));
// Direct call to `check_ptr_access_align` checks alignment even on CTFE machines.
try_validation!(
self.ecx.check_ptr_access_align(
place.ptr,
size,
align,
CheckInAllocMsg::InboundsTest, // will anyway be replaced by validity message
),
self.path,
AlignmentCheckFailed { required, has } =>
{
"an unaligned {kind} (required {} byte alignment but found {})",
required.bytes(),
has.bytes()
},
DanglingIntPointer(0, _) =>
{ "a null {kind}" },
DanglingIntPointer(i, _) =>
{ "a dangling {kind} (address {i:#x} is unallocated)" },
PointerOutOfBounds { .. } =>
{ "a dangling {kind} (going beyond the bounds of its allocation)" },
// This cannot happen during const-eval (because interning already detects
// dangling pointers), but it can happen in Miri.
PointerUseAfterFree(..) =>
{ "a dangling {kind} (use-after-free)" },
);
// Do not allow pointers to uninhabited types.
if place.layout.abi.is_uninhabited() {
throw_validation_failure!(self.path,
{ "a {kind} pointing to uninhabited type {}", place.layout.ty }
)
}
// Recursive checking
if let Some(ref mut ref_tracking) = self.ref_tracking {
// Proceed recursively even for ZST, no reason to skip them!
// `!` is a ZST and we want to validate it.
if let Ok((alloc_id, _offset, _prov)) = self.ecx.ptr_try_get_alloc_id(place.ptr) {
// Let's see what kind of memory this points to.
let alloc_kind = self.ecx.tcx.try_get_global_alloc(alloc_id);
match alloc_kind {
Some(GlobalAlloc::Static(did)) => {
// Special handling for pointers to statics (irrespective of their type).
assert!(!self.ecx.tcx.is_thread_local_static(did));
assert!(self.ecx.tcx.is_static(did));
if matches!(
self.ctfe_mode,
Some(CtfeValidationMode::Const { allow_static_ptrs: false, .. })
) {
// See const_eval::machine::MemoryExtra::can_access_statics for why
// this check is so important.
// This check is reachable when the const just referenced the static,
// but never read it (so we never entered `before_access_global`).
throw_validation_failure!(self.path,
{ "a {} pointing to a static variable in a constant", kind }
);
}
// We skip recursively checking other statics. These statics must be sound by
// themselves, and the only way to get broken statics here is by using
// unsafe code.
// The reasons we don't check other statics is twofold. For one, in all
// sound cases, the static was already validated on its own, and second, we
// trigger cycle errors if we try to compute the value of the other static
// and that static refers back to us.
// We might miss const-invalid data,
// but things are still sound otherwise (in particular re: consts
// referring to statics).
return Ok(());
}
Some(GlobalAlloc::Memory(alloc)) => {
if alloc.inner().mutability == Mutability::Mut
&& matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { .. }))
{
// This should be unreachable, but if someone manages to copy a pointer
// out of a `static`, then that pointer might point to mutable memory,
// and we would catch that here.
throw_validation_failure!(self.path,
{ "a {} pointing to mutable memory in a constant", kind }
);
}
}
// Nothing to check for these.
None | Some(GlobalAlloc::Function(..) | GlobalAlloc::VTable(..)) => {}
}
}
let path = &self.path;
ref_tracking.track(place, || {
// We need to clone the path anyway, make sure it gets created
// with enough space for the additional `Deref`.
let mut new_path = Vec::with_capacity(path.len() + 1);
new_path.extend(path);
new_path.push(PathElem::Deref);
new_path
});
}
Ok(())
}
/// Check if this is a value of primitive type, and if yes check the validity of the value
/// at that type. Return `true` if the type is indeed primitive.
fn try_visit_primitive(
&mut self,
value: &OpTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, bool> {
// Go over all the primitive types
let ty = value.layout.ty;
match ty.kind() {
ty::Bool => {
let value = self.read_scalar(value, "a boolean")?;
try_validation!(
value.to_bool(),
self.path,
InvalidBool(..) =>
{ "{:x}", value } expected { "a boolean" },
);
Ok(true)
}
ty::Char => {
let value = self.read_scalar(value, "a unicode scalar value")?;
try_validation!(
value.to_char(),
self.path,
InvalidChar(..) =>
{ "{:x}", value } expected { "a valid unicode scalar value (in `0..=0x10FFFF` but not in `0xD800..=0xDFFF`)" },
);
Ok(true)
}
ty::Float(_) | ty::Int(_) | ty::Uint(_) => {
// NOTE: Keep this in sync with the array optimization for int/float
// types below!
let value = self.read_scalar(
value,
if matches!(ty.kind(), ty::Float(..)) {
"a floating point number"
} else {
"an integer"
},
)?;
// As a special exception we *do* match on a `Scalar` here, since we truly want
// to know its underlying representation (and *not* cast it to an integer).
if matches!(value, Scalar::Ptr(..)) {
throw_validation_failure!(self.path,
{ "{:x}", value } expected { "plain (non-pointer) bytes" }
)
}
Ok(true)
}
ty::RawPtr(..) => {
// We are conservative with uninit for integers, but try to
// actually enforce the strict rules for raw pointers (mostly because
// that lets us re-use `ref_to_mplace`).
let place =
self.ecx.ref_to_mplace(&self.read_immediate(value, "a raw pointer")?)?;
if place.layout.is_unsized() {
self.check_wide_ptr_meta(place.meta, place.layout)?;
}
Ok(true)
}
ty::Ref(_, ty, mutbl) => {
if matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { .. }))
&& *mutbl == Mutability::Mut
{
// A mutable reference inside a const? That does not seem right (except if it is
// a ZST).
let layout = self.ecx.layout_of(*ty)?;
if !layout.is_zst() {
throw_validation_failure!(self.path, { "mutable reference in a `const`" });
}
}
self.check_safe_pointer(value, "reference")?;
Ok(true)
}
ty::FnPtr(_sig) => {
let value = self.read_scalar(value, "a function pointer")?;
// If we check references recursively, also check that this points to a function.
if let Some(_) = self.ref_tracking {
let ptr = value.to_pointer(self.ecx)?;
let _fn = try_validation!(
self.ecx.get_ptr_fn(ptr),
self.path,
DanglingIntPointer(..) |
InvalidFunctionPointer(..) =>
{ "{ptr}" } expected { "a function pointer" },
);
// FIXME: Check if the signature matches
} else {
// Otherwise (for standalone Miri), we have to still check it to be non-null.
if self.ecx.scalar_may_be_null(value)? {
throw_validation_failure!(self.path, { "a null function pointer" });
}
}
Ok(true)
}
ty::Never => throw_validation_failure!(self.path, { "a value of the never type `!`" }),
ty::Foreign(..) | ty::FnDef(..) => {
// Nothing to check.
Ok(true)
}
// The above should be all the primitive types. The rest is compound, we
// check them by visiting their fields/variants.
ty::Adt(..)
| ty::Tuple(..)
| ty::Array(..)
| ty::Slice(..)
| ty::Str
| ty::Dynamic(..)
| ty::Closure(..)
| ty::Generator(..) => Ok(false),
// Some types only occur during typechecking, they have no layout.
// We should not see them here and we could not check them anyway.
ty::Error(_)
| ty::Infer(..)
| ty::Placeholder(..)
| ty::Bound(..)
| ty::Param(..)
| ty::Opaque(..)
| ty::Projection(..)
| ty::GeneratorWitness(..) => bug!("Encountered invalid type {:?}", ty),
}
}
fn visit_scalar(
&mut self,
scalar: Scalar<M::Provenance>,
scalar_layout: ScalarAbi,
) -> InterpResult<'tcx> {
let size = scalar_layout.size(self.ecx);
let valid_range = scalar_layout.valid_range(self.ecx);
let WrappingRange { start, end } = valid_range;
let max_value = size.unsigned_int_max();
assert!(end <= max_value);
let bits = match scalar.try_to_int() {
Ok(int) => int.assert_bits(size),
Err(_) => {
// So this is a pointer then, and casting to an int failed.
// Can only happen during CTFE.
// We support 2 kinds of ranges here: full range, and excluding zero.
if start == 1 && end == max_value {
// Only null is the niche. So make sure the ptr is NOT null.
if self.ecx.scalar_may_be_null(scalar)? {
throw_validation_failure!(self.path,
{ "a potentially null pointer" }
expected {
"something that cannot possibly fail to be {}",
wrapping_range_format(valid_range, max_value)
}
)
} else {
return Ok(());
}
} else if scalar_layout.is_always_valid(self.ecx) {
// Easy. (This is reachable if `enforce_number_validity` is set.)
return Ok(());
} else {
// Conservatively, we reject, because the pointer *could* have a bad
// value.
throw_validation_failure!(self.path,
{ "a pointer" }
expected {
"something that cannot possibly fail to be {}",
wrapping_range_format(valid_range, max_value)
}
)
}
}
};
// Now compare.
if valid_range.contains(bits) {
Ok(())
} else {
throw_validation_failure!(self.path,
{ "{}", bits }
expected { "something {}", wrapping_range_format(valid_range, max_value) }
)
}
}
}
impl<'rt, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValueVisitor<'mir, 'tcx, M>
for ValidityVisitor<'rt, 'mir, 'tcx, M>
{
type V = OpTy<'tcx, M::Provenance>;
#[inline(always)]
fn ecx(&self) -> &InterpCx<'mir, 'tcx, M> {
&self.ecx
}
fn read_discriminant(
&mut self,
op: &OpTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, VariantIdx> {
self.with_elem(PathElem::EnumTag, move |this| {
Ok(try_validation!(
this.ecx.read_discriminant(op),
this.path,
InvalidTag(val) =>
{ "{:x}", val } expected { "a valid enum tag" },
InvalidUninitBytes(None) =>
{ "uninitialized bytes" } expected { "a valid enum tag" },
)
.1)
})
}
#[inline]
fn visit_field(
&mut self,
old_op: &OpTy<'tcx, M::Provenance>,
field: usize,
new_op: &OpTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
let elem = self.aggregate_field_path_elem(old_op.layout, field);
self.with_elem(elem, move |this| this.visit_value(new_op))
}
#[inline]
fn visit_variant(
&mut self,
old_op: &OpTy<'tcx, M::Provenance>,
variant_id: VariantIdx,
new_op: &OpTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
let name = match old_op.layout.ty.kind() {
ty::Adt(adt, _) => PathElem::Variant(adt.variant(variant_id).name),
// Generators also have variants
ty::Generator(..) => PathElem::GeneratorState(variant_id),
_ => bug!("Unexpected type with variant: {:?}", old_op.layout.ty),
};
self.with_elem(name, move |this| this.visit_value(new_op))
}
#[inline(always)]
fn visit_union(
&mut self,
op: &OpTy<'tcx, M::Provenance>,
_fields: NonZeroUsize,
) -> InterpResult<'tcx> {
// Special check preventing `UnsafeCell` inside unions in the inner part of constants.
if matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { inner: true, .. })) {
if !op.layout.ty.is_freeze(self.ecx.tcx.at(DUMMY_SP), self.ecx.param_env) {
throw_validation_failure!(self.path, { "`UnsafeCell` in a `const`" });
}
}
Ok(())
}
#[inline]
fn visit_box(&mut self, op: &OpTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
self.check_safe_pointer(op, "box")?;
Ok(())
}
#[inline]
fn visit_value(&mut self, op: &OpTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
trace!("visit_value: {:?}, {:?}", *op, op.layout);
// Check primitive types -- the leaves of our recursive descent.
if self.try_visit_primitive(op)? {
return Ok(());
}
// Special check preventing `UnsafeCell` in the inner part of constants
if let Some(def) = op.layout.ty.ty_adt_def() {
if matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { inner: true, .. }))
&& def.is_unsafe_cell()
{
throw_validation_failure!(self.path, { "`UnsafeCell` in a `const`" });
}
}
// Recursively walk the value at its type.
self.walk_value(op)?;
// *After* all of this, check the ABI. We need to check the ABI to handle
// types like `NonNull` where the `Scalar` info is more restrictive than what
// the fields say (`rustc_layout_scalar_valid_range_start`).
// But in most cases, this will just propagate what the fields say,
// and then we want the error to point at the field -- so, first recurse,
// then check ABI.
//
// FIXME: We could avoid some redundant checks here. For newtypes wrapping
// scalars, we do the same check on every "level" (e.g., first we check
// MyNewtype and then the scalar in there).
match op.layout.abi {
Abi::Uninhabited => {
throw_validation_failure!(self.path,
{ "a value of uninhabited type {:?}", op.layout.ty }
);
}
Abi::Scalar(scalar_layout) => {
if !scalar_layout.is_uninit_valid() {
// There is something to check here.
let scalar = self.read_scalar(op, "initiailized scalar value")?;
self.visit_scalar(scalar, scalar_layout)?;
}
}
Abi::ScalarPair(a_layout, b_layout) => {
// There is no `rustc_layout_scalar_valid_range_start` for pairs, so
// we would validate these things as we descend into the fields,
// but that can miss bugs in layout computation. Layout computation
// is subtle due to enums having ScalarPair layout, where one field
// is the discriminant.
if cfg!(debug_assertions)
&& !a_layout.is_uninit_valid()
&& !b_layout.is_uninit_valid()
{
// We can only proceed if *both* scalars need to be initialized.
// FIXME: find a way to also check ScalarPair when one side can be uninit but
// the other must be init.
let (a, b) =
self.read_immediate(op, "initiailized scalar value")?.to_scalar_pair();
self.visit_scalar(a, a_layout)?;
self.visit_scalar(b, b_layout)?;
}
}
Abi::Vector { .. } => {
// No checks here, we assume layout computation gets this right.
// (This is harder to check since Miri does not represent these as `Immediate`. We
// also cannot use field projections since this might be a newtype around a vector.)
}
Abi::Aggregate { .. } => {
// Nothing to do.
}
}
Ok(())
}
fn visit_aggregate(
&mut self,
op: &OpTy<'tcx, M::Provenance>,
fields: impl Iterator<Item = InterpResult<'tcx, Self::V>>,
) -> InterpResult<'tcx> {
match op.layout.ty.kind() {
ty::Str => {
let mplace = op.assert_mem_place(); // strings are unsized and hence never immediate
let len = mplace.len(self.ecx)?;
try_validation!(
self.ecx.read_bytes_ptr_strip_provenance(mplace.ptr, Size::from_bytes(len)),
self.path,
InvalidUninitBytes(..) => { "uninitialized data in `str`" },
);
}
ty::Array(tys, ..) | ty::Slice(tys)
// This optimization applies for types that can hold arbitrary bytes (such as
// integer and floating point types) or for structs or tuples with no fields.
// FIXME(wesleywiser) This logic could be extended further to arbitrary structs
// or tuples made up of integer/floating point types or inhabited ZSTs with no
// padding.
if matches!(tys.kind(), ty::Int(..) | ty::Uint(..) | ty::Float(..))
=>
{
// Optimized handling for arrays of integer/float type.
// This is the length of the array/slice.
let len = op.len(self.ecx)?;
// This is the element type size.
let layout = self.ecx.layout_of(*tys)?;
// This is the size in bytes of the whole array. (This checks for overflow.)
let size = layout.size * len;
// If the size is 0, there is nothing to check.
// (`size` can only be 0 of `len` is 0, and empty arrays are always valid.)
if size == Size::ZERO {
return Ok(());
}
// Now that we definitely have a non-ZST array, we know it lives in memory.
let mplace = match op.try_as_mplace() {
Ok(mplace) => mplace,
Err(imm) => match *imm {
Immediate::Uninit =>
throw_validation_failure!(self.path, { "uninitialized bytes" }),
Immediate::Scalar(..) | Immediate::ScalarPair(..) =>
bug!("arrays/slices can never have Scalar/ScalarPair layout"),
}
};
// Optimization: we just check the entire range at once.
// NOTE: Keep this in sync with the handling of integer and float
// types above, in `visit_primitive`.
// In run-time mode, we accept pointers in here. This is actually more
// permissive than a per-element check would be, e.g., we accept
// a &[u8] that contains a pointer even though bytewise checking would
// reject it. However, that's good: We don't inherently want
// to reject those pointers, we just do not have the machinery to
// talk about parts of a pointer.
// We also accept uninit, for consistency with the slow path.
let alloc = self.ecx.get_ptr_alloc(mplace.ptr, size, mplace.align)?.expect("we already excluded size 0");
match alloc.get_bytes_strip_provenance() {
// In the happy case, we needn't check anything else.
Ok(_) => {}
// Some error happened, try to provide a more detailed description.
Err(err) => {
// For some errors we might be able to provide extra information.
// (This custom logic does not fit the `try_validation!` macro.)
match err.kind() {
err_ub!(InvalidUninitBytes(Some((_alloc_id, access)))) => {
// Some byte was uninitialized, determine which
// element that byte belongs to so we can
// provide an index.
let i = usize::try_from(
access.uninit.start.bytes() / layout.size.bytes(),
)
.unwrap();
self.path.push(PathElem::ArrayElem(i));
throw_validation_failure!(self.path, { "uninitialized bytes" })
}
// Propagate upwards (that will also check for unexpected errors).
_ => return Err(err),
}
}
}
}
// Fast path for arrays and slices of ZSTs. We only need to check a single ZST element
// of an array and not all of them, because there's only a single value of a specific
// ZST type, so either validation fails for all elements or none.
ty::Array(tys, ..) | ty::Slice(tys) if self.ecx.layout_of(*tys)?.is_zst() => {
// Validate just the first element (if any).
self.walk_aggregate(op, fields.take(1))?
}
_ => {
self.walk_aggregate(op, fields)? // default handler
}
}
Ok(())
}
}
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
fn validate_operand_internal(
&self,
op: &OpTy<'tcx, M::Provenance>,
path: Vec<PathElem>,
ref_tracking: Option<&mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>>,
ctfe_mode: Option<CtfeValidationMode>,
) -> InterpResult<'tcx> {
trace!("validate_operand_internal: {:?}, {:?}", *op, op.layout.ty);
// Construct a visitor
let mut visitor = ValidityVisitor { path, ref_tracking, ctfe_mode, ecx: self };
// Run it.
match visitor.visit_value(&op) {
Ok(()) => Ok(()),
// Pass through validation failures.
Err(err) if matches!(err.kind(), err_ub!(ValidationFailure { .. })) => Err(err),
// Complain about any other kind of UB error -- those are bad because we'd like to
// report them in a way that shows *where* in the value the issue lies.
Err(err) if matches!(err.kind(), InterpError::UndefinedBehavior(_)) => {
err.print_backtrace();
bug!("Unexpected Undefined Behavior error during validation: {}", err);
}
// Pass through everything else.
Err(err) => Err(err),
}
}
/// This function checks the data at `op` to be const-valid.
/// `op` is assumed to cover valid memory if it is an indirect operand.
/// It will error if the bits at the destination do not match the ones described by the layout.
///
/// `ref_tracking` is used to record references that we encounter so that they
/// can be checked recursively by an outside driving loop.
///
/// `constant` controls whether this must satisfy the rules for constants:
/// - no pointers to statics.
/// - no `UnsafeCell` or non-ZST `&mut`.
#[inline(always)]
pub fn const_validate_operand(
&self,
op: &OpTy<'tcx, M::Provenance>,
path: Vec<PathElem>,
ref_tracking: &mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>,
ctfe_mode: CtfeValidationMode,
) -> InterpResult<'tcx> {
self.validate_operand_internal(op, path, Some(ref_tracking), Some(ctfe_mode))
}
/// This function checks the data at `op` to be runtime-valid.
/// `op` is assumed to cover valid memory if it is an indirect operand.
/// It will error if the bits at the destination do not match the ones described by the layout.
#[inline(always)]
pub fn validate_operand(&self, op: &OpTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
// Note that we *could* actually be in CTFE here with `-Zextra-const-ub-checks`, but it's
// still correct to not use `ctfe_mode`: that mode is for validation of the final constant
// value, it rules out things like `UnsafeCell` in awkward places. It also can make checking
// recurse through references which, for now, we don't want here, either.
self.validate_operand_internal(op, vec![], None, None)
}
}