1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
//! Defines the `IntoIter` owned iterator for arrays.
use crate::{
fmt,
iter::{self, ExactSizeIterator, FusedIterator, TrustedLen},
mem::{self, MaybeUninit},
ops::{IndexRange, Range},
ptr,
};
/// A by-value [array] iterator.
#[stable(feature = "array_value_iter", since = "1.51.0")]
#[rustc_insignificant_dtor]
pub struct IntoIter<T, const N: usize> {
/// This is the array we are iterating over.
///
/// Elements with index `i` where `alive.start <= i < alive.end` have not
/// been yielded yet and are valid array entries. Elements with indices `i
/// < alive.start` or `i >= alive.end` have been yielded already and must
/// not be accessed anymore! Those dead elements might even be in a
/// completely uninitialized state!
///
/// So the invariants are:
/// - `data[alive]` is alive (i.e. contains valid elements)
/// - `data[..alive.start]` and `data[alive.end..]` are dead (i.e. the
/// elements were already read and must not be touched anymore!)
data: [MaybeUninit<T>; N],
/// The elements in `data` that have not been yielded yet.
///
/// Invariants:
/// - `alive.end <= N`
///
/// (And the `IndexRange` type requires `alive.start <= alive.end`.)
alive: IndexRange,
}
// Note: the `#[rustc_skip_array_during_method_dispatch]` on `trait IntoIterator`
// hides this implementation from explicit `.into_iter()` calls on editions < 2021,
// so those calls will still resolve to the slice implementation, by reference.
#[stable(feature = "array_into_iter_impl", since = "1.53.0")]
impl<T, const N: usize> IntoIterator for [T; N] {
type Item = T;
type IntoIter = IntoIter<T, N>;
/// Creates a consuming iterator, that is, one that moves each value out of
/// the array (from start to end). The array cannot be used after calling
/// this unless `T` implements `Copy`, so the whole array is copied.
///
/// Arrays have special behavior when calling `.into_iter()` prior to the
/// 2021 edition -- see the [array] Editions section for more information.
///
/// [array]: prim@array
fn into_iter(self) -> Self::IntoIter {
// SAFETY: The transmute here is actually safe. The docs of `MaybeUninit`
// promise:
//
// > `MaybeUninit<T>` is guaranteed to have the same size and alignment
// > as `T`.
//
// The docs even show a transmute from an array of `MaybeUninit<T>` to
// an array of `T`.
//
// With that, this initialization satisfies the invariants.
// FIXME(LukasKalbertodt): actually use `mem::transmute` here, once it
// works with const generics:
// `mem::transmute::<[T; N], [MaybeUninit<T>; N]>(array)`
//
// Until then, we can use `mem::transmute_copy` to create a bitwise copy
// as a different type, then forget `array` so that it is not dropped.
unsafe {
let iter = IntoIter { data: mem::transmute_copy(&self), alive: IndexRange::zero_to(N) };
mem::forget(self);
iter
}
}
}
impl<T, const N: usize> IntoIter<T, N> {
/// Creates a new iterator over the given `array`.
#[stable(feature = "array_value_iter", since = "1.51.0")]
#[deprecated(since = "1.59.0", note = "use `IntoIterator::into_iter` instead")]
pub fn new(array: [T; N]) -> Self {
IntoIterator::into_iter(array)
}
/// Creates an iterator over the elements in a partially-initialized buffer.
///
/// If you have a fully-initialized array, then use [`IntoIterator`].
/// But this is useful for returning partial results from unsafe code.
///
/// # Safety
///
/// - The `buffer[initialized]` elements must all be initialized.
/// - The range must be canonical, with `initialized.start <= initialized.end`.
/// - The range must be in-bounds for the buffer, with `initialized.end <= N`.
/// (Like how indexing `[0][100..100]` fails despite the range being empty.)
///
/// It's sound to have more elements initialized than mentioned, though that
/// will most likely result in them being leaked.
///
/// # Examples
///
/// ```
/// #![feature(array_into_iter_constructors)]
/// #![feature(maybe_uninit_uninit_array_transpose)]
/// #![feature(maybe_uninit_uninit_array)]
/// use std::array::IntoIter;
/// use std::mem::MaybeUninit;
///
/// # // Hi! Thanks for reading the code. This is restricted to `Copy` because
/// # // otherwise it could leak. A fully-general version this would need a drop
/// # // guard to handle panics from the iterator, but this works for an example.
/// fn next_chunk<T: Copy, const N: usize>(
/// it: &mut impl Iterator<Item = T>,
/// ) -> Result<[T; N], IntoIter<T, N>> {
/// let mut buffer = MaybeUninit::uninit_array();
/// let mut i = 0;
/// while i < N {
/// match it.next() {
/// Some(x) => {
/// buffer[i].write(x);
/// i += 1;
/// }
/// None => {
/// // SAFETY: We've initialized the first `i` items
/// unsafe {
/// return Err(IntoIter::new_unchecked(buffer, 0..i));
/// }
/// }
/// }
/// }
///
/// // SAFETY: We've initialized all N items
/// unsafe { Ok(buffer.transpose().assume_init()) }
/// }
///
/// let r: [_; 4] = next_chunk(&mut (10..16)).unwrap();
/// assert_eq!(r, [10, 11, 12, 13]);
/// let r: IntoIter<_, 40> = next_chunk(&mut (10..16)).unwrap_err();
/// assert_eq!(r.collect::<Vec<_>>(), vec![10, 11, 12, 13, 14, 15]);
/// ```
#[unstable(feature = "array_into_iter_constructors", issue = "91583")]
#[rustc_const_unstable(feature = "const_array_into_iter_constructors", issue = "91583")]
pub const unsafe fn new_unchecked(
buffer: [MaybeUninit<T>; N],
initialized: Range<usize>,
) -> Self {
// SAFETY: one of our safety conditions is that the range is canonical.
let alive = unsafe { IndexRange::new_unchecked(initialized.start, initialized.end) };
Self { data: buffer, alive }
}
/// Creates an iterator over `T` which returns no elements.
///
/// If you just need an empty iterator, then use
/// [`iter::empty()`](crate::iter::empty) instead.
/// And if you need an empty array, use `[]`.
///
/// But this is useful when you need an `array::IntoIter<T, N>` *specifically*.
///
/// # Examples
///
/// ```
/// #![feature(array_into_iter_constructors)]
/// use std::array::IntoIter;
///
/// let empty = IntoIter::<i32, 3>::empty();
/// assert_eq!(empty.len(), 0);
/// assert_eq!(empty.as_slice(), &[]);
///
/// let empty = IntoIter::<std::convert::Infallible, 200>::empty();
/// assert_eq!(empty.len(), 0);
/// ```
///
/// `[1, 2].into_iter()` and `[].into_iter()` have different types
/// ```should_fail,edition2021
/// #![feature(array_into_iter_constructors)]
/// use std::array::IntoIter;
///
/// pub fn get_bytes(b: bool) -> IntoIter<i8, 4> {
/// if b {
/// [1, 2, 3, 4].into_iter()
/// } else {
/// [].into_iter() // error[E0308]: mismatched types
/// }
/// }
/// ```
///
/// But using this method you can get an empty iterator of appropriate size:
/// ```edition2021
/// #![feature(array_into_iter_constructors)]
/// use std::array::IntoIter;
///
/// pub fn get_bytes(b: bool) -> IntoIter<i8, 4> {
/// if b {
/// [1, 2, 3, 4].into_iter()
/// } else {
/// IntoIter::empty()
/// }
/// }
///
/// assert_eq!(get_bytes(true).collect::<Vec<_>>(), vec![1, 2, 3, 4]);
/// assert_eq!(get_bytes(false).collect::<Vec<_>>(), vec![]);
/// ```
#[unstable(feature = "array_into_iter_constructors", issue = "91583")]
#[rustc_const_unstable(feature = "const_array_into_iter_constructors", issue = "91583")]
pub const fn empty() -> Self {
let buffer = MaybeUninit::uninit_array();
let initialized = 0..0;
// SAFETY: We're telling it that none of the elements are initialized,
// which is trivially true. And ∀N: usize, 0 <= N.
unsafe { Self::new_unchecked(buffer, initialized) }
}
/// Returns an immutable slice of all elements that have not been yielded
/// yet.
#[stable(feature = "array_value_iter", since = "1.51.0")]
pub fn as_slice(&self) -> &[T] {
// SAFETY: We know that all elements within `alive` are properly initialized.
unsafe {
let slice = self.data.get_unchecked(self.alive.clone());
MaybeUninit::slice_assume_init_ref(slice)
}
}
/// Returns a mutable slice of all elements that have not been yielded yet.
#[stable(feature = "array_value_iter", since = "1.51.0")]
pub fn as_mut_slice(&mut self) -> &mut [T] {
// SAFETY: We know that all elements within `alive` are properly initialized.
unsafe {
let slice = self.data.get_unchecked_mut(self.alive.clone());
MaybeUninit::slice_assume_init_mut(slice)
}
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Iterator for IntoIter<T, N> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
// Get the next index from the front.
//
// Increasing `alive.start` by 1 maintains the invariant regarding
// `alive`. However, due to this change, for a short time, the alive
// zone is not `data[alive]` anymore, but `data[idx..alive.end]`.
self.alive.next().map(|idx| {
// Read the element from the array.
// SAFETY: `idx` is an index into the former "alive" region of the
// array. Reading this element means that `data[idx]` is regarded as
// dead now (i.e. do not touch). As `idx` was the start of the
// alive-zone, the alive zone is now `data[alive]` again, restoring
// all invariants.
unsafe { self.data.get_unchecked(idx).assume_init_read() }
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
#[inline]
fn fold<Acc, Fold>(mut self, init: Acc, mut fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
let data = &mut self.data;
iter::ByRefSized(&mut self.alive).fold(init, |acc, idx| {
// SAFETY: idx is obtained by folding over the `alive` range, which implies the
// value is currently considered alive but as the range is being consumed each value
// we read here will only be read once and then considered dead.
fold(acc, unsafe { data.get_unchecked(idx).assume_init_read() })
})
}
fn count(self) -> usize {
self.len()
}
fn last(mut self) -> Option<Self::Item> {
self.next_back()
}
fn advance_by(&mut self, n: usize) -> Result<(), usize> {
let original_len = self.len();
// This also moves the start, which marks them as conceptually "dropped",
// so if anything goes bad then our drop impl won't double-free them.
let range_to_drop = self.alive.take_prefix(n);
// SAFETY: These elements are currently initialized, so it's fine to drop them.
unsafe {
let slice = self.data.get_unchecked_mut(range_to_drop);
ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(slice));
}
if n > original_len { Err(original_len) } else { Ok(()) }
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> DoubleEndedIterator for IntoIter<T, N> {
fn next_back(&mut self) -> Option<Self::Item> {
// Get the next index from the back.
//
// Decreasing `alive.end` by 1 maintains the invariant regarding
// `alive`. However, due to this change, for a short time, the alive
// zone is not `data[alive]` anymore, but `data[alive.start..=idx]`.
self.alive.next_back().map(|idx| {
// Read the element from the array.
// SAFETY: `idx` is an index into the former "alive" region of the
// array. Reading this element means that `data[idx]` is regarded as
// dead now (i.e. do not touch). As `idx` was the end of the
// alive-zone, the alive zone is now `data[alive]` again, restoring
// all invariants.
unsafe { self.data.get_unchecked(idx).assume_init_read() }
})
}
#[inline]
fn rfold<Acc, Fold>(mut self, init: Acc, mut rfold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
let data = &mut self.data;
iter::ByRefSized(&mut self.alive).rfold(init, |acc, idx| {
// SAFETY: idx is obtained by folding over the `alive` range, which implies the
// value is currently considered alive but as the range is being consumed each value
// we read here will only be read once and then considered dead.
rfold(acc, unsafe { data.get_unchecked(idx).assume_init_read() })
})
}
fn advance_back_by(&mut self, n: usize) -> Result<(), usize> {
let original_len = self.len();
// This also moves the end, which marks them as conceptually "dropped",
// so if anything goes bad then our drop impl won't double-free them.
let range_to_drop = self.alive.take_suffix(n);
// SAFETY: These elements are currently initialized, so it's fine to drop them.
unsafe {
let slice = self.data.get_unchecked_mut(range_to_drop);
ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(slice));
}
if n > original_len { Err(original_len) } else { Ok(()) }
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Drop for IntoIter<T, N> {
fn drop(&mut self) {
// SAFETY: This is safe: `as_mut_slice` returns exactly the sub-slice
// of elements that have not been moved out yet and that remain
// to be dropped.
unsafe { ptr::drop_in_place(self.as_mut_slice()) }
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> ExactSizeIterator for IntoIter<T, N> {
fn len(&self) -> usize {
self.alive.len()
}
fn is_empty(&self) -> bool {
self.alive.is_empty()
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> FusedIterator for IntoIter<T, N> {}
// The iterator indeed reports the correct length. The number of "alive"
// elements (that will still be yielded) is the length of the range `alive`.
// This range is decremented in length in either `next` or `next_back`. It is
// always decremented by 1 in those methods, but only if `Some(_)` is returned.
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
unsafe impl<T, const N: usize> TrustedLen for IntoIter<T, N> {}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: Clone, const N: usize> Clone for IntoIter<T, N> {
fn clone(&self) -> Self {
// Note, we don't really need to match the exact same alive range, so
// we can just clone into offset 0 regardless of where `self` is.
let mut new = Self { data: MaybeUninit::uninit_array(), alive: IndexRange::zero_to(0) };
// Clone all alive elements.
for (src, dst) in iter::zip(self.as_slice(), &mut new.data) {
// Write a clone into the new array, then update its alive range.
// If cloning panics, we'll correctly drop the previous items.
dst.write(src.clone());
// This addition cannot overflow as we're iterating a slice
new.alive = IndexRange::zero_to(new.alive.end() + 1);
}
new
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: fmt::Debug, const N: usize> fmt::Debug for IntoIter<T, N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Only print the elements that were not yielded yet: we cannot
// access the yielded elements anymore.
f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
}
}