1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
// This is an attempt at an implementation following the ideal
//
// ```
// struct BTreeMap<K, V> {
//     height: usize,
//     root: Option<Box<Node<K, V, height>>>
// }
//
// struct Node<K, V, height: usize> {
//     keys: [K; 2 * B - 1],
//     vals: [V; 2 * B - 1],
//     edges: [if height > 0 { Box<Node<K, V, height - 1>> } else { () }; 2 * B],
//     parent: Option<(NonNull<Node<K, V, height + 1>>, u16)>,
//     len: u16,
// }
// ```
//
// Since Rust doesn't actually have dependent types and polymorphic recursion,
// we make do with lots of unsafety.

// A major goal of this module is to avoid complexity by treating the tree as a generic (if
// weirdly shaped) container and avoiding dealing with most of the B-Tree invariants. As such,
// this module doesn't care whether the entries are sorted, which nodes can be underfull, or
// even what underfull means. However, we do rely on a few invariants:
//
// - Trees must have uniform depth/height. This means that every path down to a leaf from a
//   given node has exactly the same length.
// - A node of length `n` has `n` keys, `n` values, and `n + 1` edges.
//   This implies that even an empty node has at least one edge.
//   For a leaf node, "having an edge" only means we can identify a position in the node,
//   since leaf edges are empty and need no data representation. In an internal node,
//   an edge both identifies a position and contains a pointer to a child node.

use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
use core::ptr::{self, NonNull};
use core::slice::SliceIndex;

use crate::alloc::{Allocator, Layout};
use crate::boxed::Box;

const B: usize = 6;
pub const CAPACITY: usize = 2 * B - 1;
pub const MIN_LEN_AFTER_SPLIT: usize = B - 1;
const KV_IDX_CENTER: usize = B - 1;
const EDGE_IDX_LEFT_OF_CENTER: usize = B - 1;
const EDGE_IDX_RIGHT_OF_CENTER: usize = B;

/// The underlying representation of leaf nodes and part of the representation of internal nodes.
struct LeafNode<K, V> {
    /// We want to be covariant in `K` and `V`.
    parent: Option<NonNull<InternalNode<K, V>>>,

    /// This node's index into the parent node's `edges` array.
    /// `*node.parent.edges[node.parent_idx]` should be the same thing as `node`.
    /// This is only guaranteed to be initialized when `parent` is non-null.
    parent_idx: MaybeUninit<u16>,

    /// The number of keys and values this node stores.
    len: u16,

    /// The arrays storing the actual data of the node. Only the first `len` elements of each
    /// array are initialized and valid.
    keys: [MaybeUninit<K>; CAPACITY],
    vals: [MaybeUninit<V>; CAPACITY],
}

impl<K, V> LeafNode<K, V> {
    /// Initializes a new `LeafNode` in-place.
    unsafe fn init(this: *mut Self) {
        // As a general policy, we leave fields uninitialized if they can be, as this should
        // be both slightly faster and easier to track in Valgrind.
        unsafe {
            // parent_idx, keys, and vals are all MaybeUninit
            ptr::addr_of_mut!((*this).parent).write(None);
            ptr::addr_of_mut!((*this).len).write(0);
        }
    }

    /// Creates a new boxed `LeafNode`.
    fn new<A: Allocator + Clone>(alloc: A) -> Box<Self, A> {
        unsafe {
            let mut leaf = Box::new_uninit_in(alloc);
            LeafNode::init(leaf.as_mut_ptr());
            leaf.assume_init()
        }
    }
}

/// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden
/// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an
/// `InternalNode` can be directly cast to a pointer to the underlying `LeafNode` portion of the
/// node, allowing code to act on leaf and internal nodes generically without having to even check
/// which of the two a pointer is pointing at. This property is enabled by the use of `repr(C)`.
#[repr(C)]
// gdb_providers.py uses this type name for introspection.
struct InternalNode<K, V> {
    data: LeafNode<K, V>,

    /// The pointers to the children of this node. `len + 1` of these are considered
    /// initialized and valid, except that near the end, while the tree is held
    /// through borrow type `Dying`, some of these pointers are dangling.
    edges: [MaybeUninit<BoxedNode<K, V>>; 2 * B],
}

impl<K, V> InternalNode<K, V> {
    /// Creates a new boxed `InternalNode`.
    ///
    /// # Safety
    /// An invariant of internal nodes is that they have at least one
    /// initialized and valid edge. This function does not set up
    /// such an edge.
    unsafe fn new<A: Allocator + Clone>(alloc: A) -> Box<Self, A> {
        unsafe {
            let mut node = Box::<Self, _>::new_uninit_in(alloc);
            // We only need to initialize the data; the edges are MaybeUninit.
            LeafNode::init(ptr::addr_of_mut!((*node.as_mut_ptr()).data));
            node.assume_init()
        }
    }
}

/// A managed, non-null pointer to a node. This is either an owned pointer to
/// `LeafNode<K, V>` or an owned pointer to `InternalNode<K, V>`.
///
/// However, `BoxedNode` contains no information as to which of the two types
/// of nodes it actually contains, and, partially due to this lack of information,
/// is not a separate type and has no destructor.
type BoxedNode<K, V> = NonNull<LeafNode<K, V>>;

// N.B. `NodeRef` is always covariant in `K` and `V`, even when the `BorrowType`
// is `Mut`. This is technically wrong, but cannot result in any unsafety due to
// internal use of `NodeRef` because we stay completely generic over `K` and `V`.
// However, whenever a public type wraps `NodeRef`, make sure that it has the
// correct variance.
///
/// A reference to a node.
///
/// This type has a number of parameters that controls how it acts:
/// - `BorrowType`: A dummy type that describes the kind of borrow and carries a lifetime.
///    - When this is `Immut<'a>`, the `NodeRef` acts roughly like `&'a Node`.
///    - When this is `ValMut<'a>`, the `NodeRef` acts roughly like `&'a Node`
///      with respect to keys and tree structure, but also allows many
///      mutable references to values throughout the tree to coexist.
///    - When this is `Mut<'a>`, the `NodeRef` acts roughly like `&'a mut Node`,
///      although insert methods allow a mutable pointer to a value to coexist.
///    - When this is `Owned`, the `NodeRef` acts roughly like `Box<Node>`,
///      but does not have a destructor, and must be cleaned up manually.
///    - When this is `Dying`, the `NodeRef` still acts roughly like `Box<Node>`,
///      but has methods to destroy the tree bit by bit, and ordinary methods,
///      while not marked as unsafe to call, can invoke UB if called incorrectly.
///   Since any `NodeRef` allows navigating through the tree, `BorrowType`
///   effectively applies to the entire tree, not just to the node itself.
/// - `K` and `V`: These are the types of keys and values stored in the nodes.
/// - `Type`: This can be `Leaf`, `Internal`, or `LeafOrInternal`. When this is
///   `Leaf`, the `NodeRef` points to a leaf node, when this is `Internal` the
///   `NodeRef` points to an internal node, and when this is `LeafOrInternal` the
///   `NodeRef` could be pointing to either type of node.
///   `Type` is named `NodeType` when used outside `NodeRef`.
///
/// Both `BorrowType` and `NodeType` restrict what methods we implement, to
/// exploit static type safety. There are limitations in the way we can apply
/// such restrictions:
/// - For each type parameter, we can only define a method either generically
///   or for one particular type. For example, we cannot define a method like
///   `into_kv` generically for all `BorrowType`, or once for all types that
///   carry a lifetime, because we want it to return `&'a` references.
///   Therefore, we define it only for the least powerful type `Immut<'a>`.
/// - We cannot get implicit coercion from say `Mut<'a>` to `Immut<'a>`.
///   Therefore, we have to explicitly call `reborrow` on a more powerful
///   `NodeRef` in order to reach a method like `into_kv`.
///
/// All methods on `NodeRef` that return some kind of reference, either:
/// - Take `self` by value, and return the lifetime carried by `BorrowType`.
///   Sometimes, to invoke such a method, we need to call `reborrow_mut`.
/// - Take `self` by reference, and (implicitly) return that reference's
///   lifetime, instead of the lifetime carried by `BorrowType`. That way,
///   the borrow checker guarantees that the `NodeRef` remains borrowed as long
///   as the returned reference is used.
///   The methods supporting insert bend this rule by returning a raw pointer,
///   i.e., a reference without any lifetime.
pub struct NodeRef<BorrowType, K, V, Type> {
    /// The number of levels that the node and the level of leaves are apart, a
    /// constant of the node that cannot be entirely described by `Type`, and that
    /// the node itself does not store. We only need to store the height of the root
    /// node, and derive every other node's height from it.
    /// Must be zero if `Type` is `Leaf` and non-zero if `Type` is `Internal`.
    height: usize,
    /// The pointer to the leaf or internal node. The definition of `InternalNode`
    /// ensures that the pointer is valid either way.
    node: NonNull<LeafNode<K, V>>,
    _marker: PhantomData<(BorrowType, Type)>,
}

/// The root node of an owned tree.
///
/// Note that this does not have a destructor, and must be cleaned up manually.
pub type Root<K, V> = NodeRef<marker::Owned, K, V, marker::LeafOrInternal>;

impl<'a, K: 'a, V: 'a, Type> Copy for NodeRef<marker::Immut<'a>, K, V, Type> {}
impl<'a, K: 'a, V: 'a, Type> Clone for NodeRef<marker::Immut<'a>, K, V, Type> {
    fn clone(&self) -> Self {
        *self
    }
}

unsafe impl<BorrowType, K: Sync, V: Sync, Type> Sync for NodeRef<BorrowType, K, V, Type> {}

unsafe impl<K: Sync, V: Sync, Type> Send for NodeRef<marker::Immut<'_>, K, V, Type> {}
unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Mut<'_>, K, V, Type> {}
unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::ValMut<'_>, K, V, Type> {}
unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Owned, K, V, Type> {}
unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Dying, K, V, Type> {}

impl<K, V> NodeRef<marker::Owned, K, V, marker::Leaf> {
    pub fn new_leaf<A: Allocator + Clone>(alloc: A) -> Self {
        Self::from_new_leaf(LeafNode::new(alloc))
    }

    fn from_new_leaf<A: Allocator + Clone>(leaf: Box<LeafNode<K, V>, A>) -> Self {
        NodeRef { height: 0, node: NonNull::from(Box::leak(leaf)), _marker: PhantomData }
    }
}

impl<K, V> NodeRef<marker::Owned, K, V, marker::Internal> {
    fn new_internal<A: Allocator + Clone>(child: Root<K, V>, alloc: A) -> Self {
        let mut new_node = unsafe { InternalNode::new(alloc) };
        new_node.edges[0].write(child.node);
        unsafe { NodeRef::from_new_internal(new_node, child.height + 1) }
    }

    /// # Safety
    /// `height` must not be zero.
    unsafe fn from_new_internal<A: Allocator + Clone>(
        internal: Box<InternalNode<K, V>, A>,
        height: usize,
    ) -> Self {
        debug_assert!(height > 0);
        let node = NonNull::from(Box::leak(internal)).cast();
        let mut this = NodeRef { height, node, _marker: PhantomData };
        this.borrow_mut().correct_all_childrens_parent_links();
        this
    }
}

impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
    /// Unpack a node reference that was packed as `NodeRef::parent`.
    fn from_internal(node: NonNull<InternalNode<K, V>>, height: usize) -> Self {
        debug_assert!(height > 0);
        NodeRef { height, node: node.cast(), _marker: PhantomData }
    }
}

impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
    /// Exposes the data of an internal node.
    ///
    /// Returns a raw ptr to avoid invalidating other references to this node.
    fn as_internal_ptr(this: &Self) -> *mut InternalNode<K, V> {
        // SAFETY: the static node type is `Internal`.
        this.node.as_ptr() as *mut InternalNode<K, V>
    }
}

impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
    /// Borrows exclusive access to the data of an internal node.
    fn as_internal_mut(&mut self) -> &mut InternalNode<K, V> {
        let ptr = Self::as_internal_ptr(self);
        unsafe { &mut *ptr }
    }
}

impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
    /// Finds the length of the node. This is the number of keys or values.
    /// The number of edges is `len() + 1`.
    /// Note that, despite being safe, calling this function can have the side effect
    /// of invalidating mutable references that unsafe code has created.
    pub fn len(&self) -> usize {
        // Crucially, we only access the `len` field here. If BorrowType is marker::ValMut,
        // there might be outstanding mutable references to values that we must not invalidate.
        unsafe { usize::from((*Self::as_leaf_ptr(self)).len) }
    }

    /// Returns the number of levels that the node and leaves are apart. Zero
    /// height means the node is a leaf itself. If you picture trees with the
    /// root on top, the number says at which elevation the node appears.
    /// If you picture trees with leaves on top, the number says how high
    /// the tree extends above the node.
    pub fn height(&self) -> usize {
        self.height
    }

    /// Temporarily takes out another, immutable reference to the same node.
    pub fn reborrow(&self) -> NodeRef<marker::Immut<'_>, K, V, Type> {
        NodeRef { height: self.height, node: self.node, _marker: PhantomData }
    }

    /// Exposes the leaf portion of any leaf or internal node.
    ///
    /// Returns a raw ptr to avoid invalidating other references to this node.
    fn as_leaf_ptr(this: &Self) -> *mut LeafNode<K, V> {
        // The node must be valid for at least the LeafNode portion.
        // This is not a reference in the NodeRef type because we don't know if
        // it should be unique or shared.
        this.node.as_ptr()
    }
}

impl<BorrowType: marker::BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
    /// Finds the parent of the current node. Returns `Ok(handle)` if the current
    /// node actually has a parent, where `handle` points to the edge of the parent
    /// that points to the current node. Returns `Err(self)` if the current node has
    /// no parent, giving back the original `NodeRef`.
    ///
    /// The method name assumes you picture trees with the root node on top.
    ///
    /// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
    /// both, upon success, do nothing.
    pub fn ascend(
        self,
    ) -> Result<Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>, Self> {
        let _ = BorrowType::TRAVERSAL_PERMIT;
        // We need to use raw pointers to nodes because, if BorrowType is marker::ValMut,
        // there might be outstanding mutable references to values that we must not invalidate.
        let leaf_ptr: *const _ = Self::as_leaf_ptr(&self);
        unsafe { (*leaf_ptr).parent }
            .as_ref()
            .map(|parent| Handle {
                node: NodeRef::from_internal(*parent, self.height + 1),
                idx: unsafe { usize::from((*leaf_ptr).parent_idx.assume_init()) },
                _marker: PhantomData,
            })
            .ok_or(self)
    }

    pub fn first_edge(self) -> Handle<Self, marker::Edge> {
        unsafe { Handle::new_edge(self, 0) }
    }

    pub fn last_edge(self) -> Handle<Self, marker::Edge> {
        let len = self.len();
        unsafe { Handle::new_edge(self, len) }
    }

    /// Note that `self` must be nonempty.
    pub fn first_kv(self) -> Handle<Self, marker::KV> {
        let len = self.len();
        assert!(len > 0);
        unsafe { Handle::new_kv(self, 0) }
    }

    /// Note that `self` must be nonempty.
    pub fn last_kv(self) -> Handle<Self, marker::KV> {
        let len = self.len();
        assert!(len > 0);
        unsafe { Handle::new_kv(self, len - 1) }
    }
}

impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
    /// Could be a public implementation of PartialEq, but only used in this module.
    fn eq(&self, other: &Self) -> bool {
        let Self { node, height, _marker } = self;
        if node.eq(&other.node) {
            debug_assert_eq!(*height, other.height);
            true
        } else {
            false
        }
    }
}

impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
    /// Exposes the leaf portion of any leaf or internal node in an immutable tree.
    fn into_leaf(self) -> &'a LeafNode<K, V> {
        let ptr = Self::as_leaf_ptr(&self);
        // SAFETY: there can be no mutable references into this tree borrowed as `Immut`.
        unsafe { &*ptr }
    }

    /// Borrows a view into the keys stored in the node.
    pub fn keys(&self) -> &[K] {
        let leaf = self.into_leaf();
        unsafe {
            MaybeUninit::slice_assume_init_ref(leaf.keys.get_unchecked(..usize::from(leaf.len)))
        }
    }
}

impl<K, V> NodeRef<marker::Dying, K, V, marker::LeafOrInternal> {
    /// Similar to `ascend`, gets a reference to a node's parent node, but also
    /// deallocates the current node in the process. This is unsafe because the
    /// current node will still be accessible despite being deallocated.
    pub unsafe fn deallocate_and_ascend<A: Allocator + Clone>(
        self,
        alloc: A,
    ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::Internal>, marker::Edge>> {
        let height = self.height;
        let node = self.node;
        let ret = self.ascend().ok();
        unsafe {
            alloc.deallocate(
                node.cast(),
                if height > 0 {
                    Layout::new::<InternalNode<K, V>>()
                } else {
                    Layout::new::<LeafNode<K, V>>()
                },
            );
        }
        ret
    }
}

impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
    /// Temporarily takes out another mutable reference to the same node. Beware, as
    /// this method is very dangerous, doubly so since it might not immediately appear
    /// dangerous.
    ///
    /// Because mutable pointers can roam anywhere around the tree, the returned
    /// pointer can easily be used to make the original pointer dangling, out of
    /// bounds, or invalid under stacked borrow rules.
    // FIXME(@gereeter) consider adding yet another type parameter to `NodeRef`
    // that restricts the use of navigation methods on reborrowed pointers,
    // preventing this unsafety.
    unsafe fn reborrow_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, Type> {
        NodeRef { height: self.height, node: self.node, _marker: PhantomData }
    }

    /// Borrows exclusive access to the leaf portion of a leaf or internal node.
    fn as_leaf_mut(&mut self) -> &mut LeafNode<K, V> {
        let ptr = Self::as_leaf_ptr(self);
        // SAFETY: we have exclusive access to the entire node.
        unsafe { &mut *ptr }
    }

    /// Offers exclusive access to the leaf portion of a leaf or internal node.
    fn into_leaf_mut(mut self) -> &'a mut LeafNode<K, V> {
        let ptr = Self::as_leaf_ptr(&mut self);
        // SAFETY: we have exclusive access to the entire node.
        unsafe { &mut *ptr }
    }
}

impl<K, V, Type> NodeRef<marker::Dying, K, V, Type> {
    /// Borrows exclusive access to the leaf portion of a dying leaf or internal node.
    fn as_leaf_dying(&mut self) -> &mut LeafNode<K, V> {
        let ptr = Self::as_leaf_ptr(self);
        // SAFETY: we have exclusive access to the entire node.
        unsafe { &mut *ptr }
    }
}

impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
    /// Borrows exclusive access to an element of the key storage area.
    ///
    /// # Safety
    /// `index` is in bounds of 0..CAPACITY
    unsafe fn key_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output
    where
        I: SliceIndex<[MaybeUninit<K>], Output = Output>,
    {
        // SAFETY: the caller will not be able to call further methods on self
        // until the key slice reference is dropped, as we have unique access
        // for the lifetime of the borrow.
        unsafe { self.as_leaf_mut().keys.as_mut_slice().get_unchecked_mut(index) }
    }

    /// Borrows exclusive access to an element or slice of the node's value storage area.
    ///
    /// # Safety
    /// `index` is in bounds of 0..CAPACITY
    unsafe fn val_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output
    where
        I: SliceIndex<[MaybeUninit<V>], Output = Output>,
    {
        // SAFETY: the caller will not be able to call further methods on self
        // until the value slice reference is dropped, as we have unique access
        // for the lifetime of the borrow.
        unsafe { self.as_leaf_mut().vals.as_mut_slice().get_unchecked_mut(index) }
    }
}

impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
    /// Borrows exclusive access to an element or slice of the node's storage area for edge contents.
    ///
    /// # Safety
    /// `index` is in bounds of 0..CAPACITY + 1
    unsafe fn edge_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output
    where
        I: SliceIndex<[MaybeUninit<BoxedNode<K, V>>], Output = Output>,
    {
        // SAFETY: the caller will not be able to call further methods on self
        // until the edge slice reference is dropped, as we have unique access
        // for the lifetime of the borrow.
        unsafe { self.as_internal_mut().edges.as_mut_slice().get_unchecked_mut(index) }
    }
}

impl<'a, K, V, Type> NodeRef<marker::ValMut<'a>, K, V, Type> {
    /// # Safety
    /// - The node has more than `idx` initialized elements.
    unsafe fn into_key_val_mut_at(mut self, idx: usize) -> (&'a K, &'a mut V) {
        // We only create a reference to the one element we are interested in,
        // to avoid aliasing with outstanding references to other elements,
        // in particular, those returned to the caller in earlier iterations.
        let leaf = Self::as_leaf_ptr(&mut self);
        let keys = unsafe { ptr::addr_of!((*leaf).keys) };
        let vals = unsafe { ptr::addr_of_mut!((*leaf).vals) };
        // We must coerce to unsized array pointers because of Rust issue #74679.
        let keys: *const [_] = keys;
        let vals: *mut [_] = vals;
        let key = unsafe { (&*keys.get_unchecked(idx)).assume_init_ref() };
        let val = unsafe { (&mut *vals.get_unchecked_mut(idx)).assume_init_mut() };
        (key, val)
    }
}

impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
    /// Borrows exclusive access to the length of the node.
    pub fn len_mut(&mut self) -> &mut u16 {
        &mut self.as_leaf_mut().len
    }
}

impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
    /// # Safety
    /// Every item returned by `range` is a valid edge index for the node.
    unsafe fn correct_childrens_parent_links<R: Iterator<Item = usize>>(&mut self, range: R) {
        for i in range {
            debug_assert!(i <= self.len());
            unsafe { Handle::new_edge(self.reborrow_mut(), i) }.correct_parent_link();
        }
    }

    fn correct_all_childrens_parent_links(&mut self) {
        let len = self.len();
        unsafe { self.correct_childrens_parent_links(0..=len) };
    }
}

impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
    /// Sets the node's link to its parent edge,
    /// without invalidating other references to the node.
    fn set_parent_link(&mut self, parent: NonNull<InternalNode<K, V>>, parent_idx: usize) {
        let leaf = Self::as_leaf_ptr(self);
        unsafe { (*leaf).parent = Some(parent) };
        unsafe { (*leaf).parent_idx.write(parent_idx as u16) };
    }
}

impl<K, V> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
    /// Clears the root's link to its parent edge.
    fn clear_parent_link(&mut self) {
        let mut root_node = self.borrow_mut();
        let leaf = root_node.as_leaf_mut();
        leaf.parent = None;
    }
}

impl<K, V> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
    /// Returns a new owned tree, with its own root node that is initially empty.
    pub fn new<A: Allocator + Clone>(alloc: A) -> Self {
        NodeRef::new_leaf(alloc).forget_type()
    }

    /// Adds a new internal node with a single edge pointing to the previous root node,
    /// make that new node the root node, and return it. This increases the height by 1
    /// and is the opposite of `pop_internal_level`.
    pub fn push_internal_level<A: Allocator + Clone>(
        &mut self,
        alloc: A,
    ) -> NodeRef<marker::Mut<'_>, K, V, marker::Internal> {
        super::mem::take_mut(self, |old_root| NodeRef::new_internal(old_root, alloc).forget_type());

        // `self.borrow_mut()`, except that we just forgot we're internal now:
        NodeRef { height: self.height, node: self.node, _marker: PhantomData }
    }

    /// Removes the internal root node, using its first child as the new root node.
    /// As it is intended only to be called when the root node has only one child,
    /// no cleanup is done on any of the keys, values and other children.
    /// This decreases the height by 1 and is the opposite of `push_internal_level`.
    ///
    /// Requires exclusive access to the `NodeRef` object but not to the root node;
    /// it will not invalidate other handles or references to the root node.
    ///
    /// Panics if there is no internal level, i.e., if the root node is a leaf.
    pub fn pop_internal_level<A: Allocator + Clone>(&mut self, alloc: A) {
        assert!(self.height > 0);

        let top = self.node;

        // SAFETY: we asserted to be internal.
        let internal_self = unsafe { self.borrow_mut().cast_to_internal_unchecked() };
        // SAFETY: we borrowed `self` exclusively and its borrow type is exclusive.
        let internal_node = unsafe { &mut *NodeRef::as_internal_ptr(&internal_self) };
        // SAFETY: the first edge is always initialized.
        self.node = unsafe { internal_node.edges[0].assume_init_read() };
        self.height -= 1;
        self.clear_parent_link();

        unsafe {
            alloc.deallocate(top.cast(), Layout::new::<InternalNode<K, V>>());
        }
    }
}

impl<K, V, Type> NodeRef<marker::Owned, K, V, Type> {
    /// Mutably borrows the owned root node. Unlike `reborrow_mut`, this is safe
    /// because the return value cannot be used to destroy the root, and there
    /// cannot be other references to the tree.
    pub fn borrow_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, Type> {
        NodeRef { height: self.height, node: self.node, _marker: PhantomData }
    }

    /// Slightly mutably borrows the owned root node.
    pub fn borrow_valmut(&mut self) -> NodeRef<marker::ValMut<'_>, K, V, Type> {
        NodeRef { height: self.height, node: self.node, _marker: PhantomData }
    }

    /// Irreversibly transitions to a reference that permits traversal and offers
    /// destructive methods and little else.
    pub fn into_dying(self) -> NodeRef<marker::Dying, K, V, Type> {
        NodeRef { height: self.height, node: self.node, _marker: PhantomData }
    }
}

impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
    /// Adds a key-value pair to the end of the node, and returns
    /// the mutable reference of the inserted value.
    pub fn push(&mut self, key: K, val: V) -> &mut V {
        let len = self.len_mut();
        let idx = usize::from(*len);
        assert!(idx < CAPACITY);
        *len += 1;
        unsafe {
            self.key_area_mut(idx).write(key);
            self.val_area_mut(idx).write(val)
        }
    }
}

impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
    /// Adds a key-value pair, and an edge to go to the right of that pair,
    /// to the end of the node.
    pub fn push(&mut self, key: K, val: V, edge: Root<K, V>) {
        assert!(edge.height == self.height - 1);

        let len = self.len_mut();
        let idx = usize::from(*len);
        assert!(idx < CAPACITY);
        *len += 1;
        unsafe {
            self.key_area_mut(idx).write(key);
            self.val_area_mut(idx).write(val);
            self.edge_area_mut(idx + 1).write(edge.node);
            Handle::new_edge(self.reborrow_mut(), idx + 1).correct_parent_link();
        }
    }
}

impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Leaf> {
    /// Removes any static information asserting that this node is a `Leaf` node.
    pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
        NodeRef { height: self.height, node: self.node, _marker: PhantomData }
    }
}

impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
    /// Removes any static information asserting that this node is an `Internal` node.
    pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
        NodeRef { height: self.height, node: self.node, _marker: PhantomData }
    }
}

impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
    /// Checks whether a node is an `Internal` node or a `Leaf` node.
    pub fn force(
        self,
    ) -> ForceResult<
        NodeRef<BorrowType, K, V, marker::Leaf>,
        NodeRef<BorrowType, K, V, marker::Internal>,
    > {
        if self.height == 0 {
            ForceResult::Leaf(NodeRef {
                height: self.height,
                node: self.node,
                _marker: PhantomData,
            })
        } else {
            ForceResult::Internal(NodeRef {
                height: self.height,
                node: self.node,
                _marker: PhantomData,
            })
        }
    }
}

impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
    /// Unsafely asserts to the compiler the static information that this node is a `Leaf`.
    unsafe fn cast_to_leaf_unchecked(self) -> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
        debug_assert!(self.height == 0);
        NodeRef { height: self.height, node: self.node, _marker: PhantomData }
    }

    /// Unsafely asserts to the compiler the static information that this node is an `Internal`.
    unsafe fn cast_to_internal_unchecked(self) -> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
        debug_assert!(self.height > 0);
        NodeRef { height: self.height, node: self.node, _marker: PhantomData }
    }
}

/// A reference to a specific key-value pair or edge within a node. The `Node` parameter
/// must be a `NodeRef`, while the `Type` can either be `KV` (signifying a handle on a key-value
/// pair) or `Edge` (signifying a handle on an edge).
///
/// Note that even `Leaf` nodes can have `Edge` handles. Instead of representing a pointer to
/// a child node, these represent the spaces where child pointers would go between the key-value
/// pairs. For example, in a node with length 2, there would be 3 possible edge locations - one
/// to the left of the node, one between the two pairs, and one at the right of the node.
pub struct Handle<Node, Type> {
    node: Node,
    idx: usize,
    _marker: PhantomData<Type>,
}

impl<Node: Copy, Type> Copy for Handle<Node, Type> {}
// We don't need the full generality of `#[derive(Clone)]`, as the only time `Node` will be
// `Clone`able is when it is an immutable reference and therefore `Copy`.
impl<Node: Copy, Type> Clone for Handle<Node, Type> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<Node, Type> Handle<Node, Type> {
    /// Retrieves the node that contains the edge or key-value pair this handle points to.
    pub fn into_node(self) -> Node {
        self.node
    }

    /// Returns the position of this handle in the node.
    pub fn idx(&self) -> usize {
        self.idx
    }
}

impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV> {
    /// Creates a new handle to a key-value pair in `node`.
    /// Unsafe because the caller must ensure that `idx < node.len()`.
    pub unsafe fn new_kv(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
        debug_assert!(idx < node.len());

        Handle { node, idx, _marker: PhantomData }
    }

    pub fn left_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
        unsafe { Handle::new_edge(self.node, self.idx) }
    }

    pub fn right_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
        unsafe { Handle::new_edge(self.node, self.idx + 1) }
    }
}

impl<BorrowType, K, V, NodeType, HandleType> PartialEq
    for Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
{
    fn eq(&self, other: &Self) -> bool {
        let Self { node, idx, _marker } = self;
        node.eq(&other.node) && *idx == other.idx
    }
}

impl<BorrowType, K, V, NodeType, HandleType>
    Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
{
    /// Temporarily takes out another immutable handle on the same location.
    pub fn reborrow(&self) -> Handle<NodeRef<marker::Immut<'_>, K, V, NodeType>, HandleType> {
        // We can't use Handle::new_kv or Handle::new_edge because we don't know our type
        Handle { node: self.node.reborrow(), idx: self.idx, _marker: PhantomData }
    }
}

impl<'a, K, V, NodeType, HandleType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, HandleType> {
    /// Temporarily takes out another mutable handle on the same location. Beware, as
    /// this method is very dangerous, doubly so since it might not immediately appear
    /// dangerous.
    ///
    /// For details, see `NodeRef::reborrow_mut`.
    pub unsafe fn reborrow_mut(
        &mut self,
    ) -> Handle<NodeRef<marker::Mut<'_>, K, V, NodeType>, HandleType> {
        // We can't use Handle::new_kv or Handle::new_edge because we don't know our type
        Handle { node: unsafe { self.node.reborrow_mut() }, idx: self.idx, _marker: PhantomData }
    }
}

impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
    /// Creates a new handle to an edge in `node`.
    /// Unsafe because the caller must ensure that `idx <= node.len()`.
    pub unsafe fn new_edge(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
        debug_assert!(idx <= node.len());

        Handle { node, idx, _marker: PhantomData }
    }

    pub fn left_kv(self) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
        if self.idx > 0 {
            Ok(unsafe { Handle::new_kv(self.node, self.idx - 1) })
        } else {
            Err(self)
        }
    }

    pub fn right_kv(self) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
        if self.idx < self.node.len() {
            Ok(unsafe { Handle::new_kv(self.node, self.idx) })
        } else {
            Err(self)
        }
    }
}

pub enum LeftOrRight<T> {
    Left(T),
    Right(T),
}

/// Given an edge index where we want to insert into a node filled to capacity,
/// computes a sensible KV index of a split point and where to perform the insertion.
/// The goal of the split point is for its key and value to end up in a parent node;
/// the keys, values and edges to the left of the split point become the left child;
/// the keys, values and edges to the right of the split point become the right child.
fn splitpoint(edge_idx: usize) -> (usize, LeftOrRight<usize>) {
    debug_assert!(edge_idx <= CAPACITY);
    // Rust issue #74834 tries to explain these symmetric rules.
    match edge_idx {
        0..EDGE_IDX_LEFT_OF_CENTER => (KV_IDX_CENTER - 1, LeftOrRight::Left(edge_idx)),
        EDGE_IDX_LEFT_OF_CENTER => (KV_IDX_CENTER, LeftOrRight::Left(edge_idx)),
        EDGE_IDX_RIGHT_OF_CENTER => (KV_IDX_CENTER, LeftOrRight::Right(0)),
        _ => (KV_IDX_CENTER + 1, LeftOrRight::Right(edge_idx - (KV_IDX_CENTER + 1 + 1))),
    }
}

impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
    /// Inserts a new key-value pair between the key-value pairs to the right and left of
    /// this edge. This method assumes that there is enough space in the node for the new
    /// pair to fit.
    ///
    /// The returned pointer points to the inserted value.
    fn insert_fit(&mut self, key: K, val: V) -> *mut V {
        debug_assert!(self.node.len() < CAPACITY);
        let new_len = self.node.len() + 1;

        unsafe {
            slice_insert(self.node.key_area_mut(..new_len), self.idx, key);
            slice_insert(self.node.val_area_mut(..new_len), self.idx, val);
            *self.node.len_mut() = new_len as u16;

            self.node.val_area_mut(self.idx).assume_init_mut()
        }
    }
}

impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
    /// Inserts a new key-value pair between the key-value pairs to the right and left of
    /// this edge. This method splits the node if there isn't enough room.
    ///
    /// The returned pointer points to the inserted value.
    fn insert<A: Allocator + Clone>(
        mut self,
        key: K,
        val: V,
        alloc: A,
    ) -> (Option<SplitResult<'a, K, V, marker::Leaf>>, *mut V) {
        if self.node.len() < CAPACITY {
            let val_ptr = self.insert_fit(key, val);
            (None, val_ptr)
        } else {
            let (middle_kv_idx, insertion) = splitpoint(self.idx);
            let middle = unsafe { Handle::new_kv(self.node, middle_kv_idx) };
            let mut result = middle.split(alloc);
            let mut insertion_edge = match insertion {
                LeftOrRight::Left(insert_idx) => unsafe {
                    Handle::new_edge(result.left.reborrow_mut(), insert_idx)
                },
                LeftOrRight::Right(insert_idx) => unsafe {
                    Handle::new_edge(result.right.borrow_mut(), insert_idx)
                },
            };
            let val_ptr = insertion_edge.insert_fit(key, val);
            (Some(result), val_ptr)
        }
    }
}

impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
    /// Fixes the parent pointer and index in the child node that this edge
    /// links to. This is useful when the ordering of edges has been changed,
    fn correct_parent_link(self) {
        // Create backpointer without invalidating other references to the node.
        let ptr = unsafe { NonNull::new_unchecked(NodeRef::as_internal_ptr(&self.node)) };
        let idx = self.idx;
        let mut child = self.descend();
        child.set_parent_link(ptr, idx);
    }
}

impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
    /// Inserts a new key-value pair and an edge that will go to the right of that new pair
    /// between this edge and the key-value pair to the right of this edge. This method assumes
    /// that there is enough space in the node for the new pair to fit.
    fn insert_fit(&mut self, key: K, val: V, edge: Root<K, V>) {
        debug_assert!(self.node.len() < CAPACITY);
        debug_assert!(edge.height == self.node.height - 1);
        let new_len = self.node.len() + 1;

        unsafe {
            slice_insert(self.node.key_area_mut(..new_len), self.idx, key);
            slice_insert(self.node.val_area_mut(..new_len), self.idx, val);
            slice_insert(self.node.edge_area_mut(..new_len + 1), self.idx + 1, edge.node);
            *self.node.len_mut() = new_len as u16;

            self.node.correct_childrens_parent_links(self.idx + 1..new_len + 1);
        }
    }

    /// Inserts a new key-value pair and an edge that will go to the right of that new pair
    /// between this edge and the key-value pair to the right of this edge. This method splits
    /// the node if there isn't enough room.
    fn insert<A: Allocator + Clone>(
        mut self,
        key: K,
        val: V,
        edge: Root<K, V>,
        alloc: A,
    ) -> Option<SplitResult<'a, K, V, marker::Internal>> {
        assert!(edge.height == self.node.height - 1);

        if self.node.len() < CAPACITY {
            self.insert_fit(key, val, edge);
            None
        } else {
            let (middle_kv_idx, insertion) = splitpoint(self.idx);
            let middle = unsafe { Handle::new_kv(self.node, middle_kv_idx) };
            let mut result = middle.split(alloc);
            let mut insertion_edge = match insertion {
                LeftOrRight::Left(insert_idx) => unsafe {
                    Handle::new_edge(result.left.reborrow_mut(), insert_idx)
                },
                LeftOrRight::Right(insert_idx) => unsafe {
                    Handle::new_edge(result.right.borrow_mut(), insert_idx)
                },
            };
            insertion_edge.insert_fit(key, val, edge);
            Some(result)
        }
    }
}

impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
    /// Inserts a new key-value pair between the key-value pairs to the right and left of
    /// this edge. This method splits the node if there isn't enough room, and tries to
    /// insert the split off portion into the parent node recursively, until the root is reached.
    ///
    /// If the returned result is some `SplitResult`, the `left` field will be the root node.
    /// The returned pointer points to the inserted value, which in the case of `SplitResult`
    /// is in the `left` or `right` tree.
    pub fn insert_recursing<A: Allocator + Clone>(
        self,
        key: K,
        value: V,
        alloc: A,
    ) -> (Option<SplitResult<'a, K, V, marker::LeafOrInternal>>, *mut V) {
        let (mut split, val_ptr) = match self.insert(key, value, alloc.clone()) {
            (None, val_ptr) => return (None, val_ptr),
            (Some(split), val_ptr) => (split.forget_node_type(), val_ptr),
        };

        loop {
            split = match split.left.ascend() {
                Ok(parent) => {
                    match parent.insert(split.kv.0, split.kv.1, split.right, alloc.clone()) {
                        None => return (None, val_ptr),
                        Some(split) => split.forget_node_type(),
                    }
                }
                Err(root) => return (Some(SplitResult { left: root, ..split }), val_ptr),
            };
        }
    }
}

impl<BorrowType: marker::BorrowType, K, V>
    Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>
{
    /// Finds the node pointed to by this edge.
    ///
    /// The method name assumes you picture trees with the root node on top.
    ///
    /// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
    /// both, upon success, do nothing.
    pub fn descend(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
        let _ = BorrowType::TRAVERSAL_PERMIT;
        // We need to use raw pointers to nodes because, if BorrowType is
        // marker::ValMut, there might be outstanding mutable references to
        // values that we must not invalidate. There's no worry accessing the
        // height field because that value is copied. Beware that, once the
        // node pointer is dereferenced, we access the edges array with a
        // reference (Rust issue #73987) and invalidate any other references
        // to or inside the array, should any be around.
        let parent_ptr = NodeRef::as_internal_ptr(&self.node);
        let node = unsafe { (*parent_ptr).edges.get_unchecked(self.idx).assume_init_read() };
        NodeRef { node, height: self.node.height - 1, _marker: PhantomData }
    }
}

impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Immut<'a>, K, V, NodeType>, marker::KV> {
    pub fn into_kv(self) -> (&'a K, &'a V) {
        debug_assert!(self.idx < self.node.len());
        let leaf = self.node.into_leaf();
        let k = unsafe { leaf.keys.get_unchecked(self.idx).assume_init_ref() };
        let v = unsafe { leaf.vals.get_unchecked(self.idx).assume_init_ref() };
        (k, v)
    }
}

impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
    pub fn key_mut(&mut self) -> &mut K {
        unsafe { self.node.key_area_mut(self.idx).assume_init_mut() }
    }

    pub fn into_val_mut(self) -> &'a mut V {
        debug_assert!(self.idx < self.node.len());
        let leaf = self.node.into_leaf_mut();
        unsafe { leaf.vals.get_unchecked_mut(self.idx).assume_init_mut() }
    }
}

impl<'a, K, V, NodeType> Handle<NodeRef<marker::ValMut<'a>, K, V, NodeType>, marker::KV> {
    pub fn into_kv_valmut(self) -> (&'a K, &'a mut V) {
        unsafe { self.node.into_key_val_mut_at(self.idx) }
    }
}

impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
    pub fn kv_mut(&mut self) -> (&mut K, &mut V) {
        debug_assert!(self.idx < self.node.len());
        // We cannot call separate key and value methods, because calling the second one
        // invalidates the reference returned by the first.
        unsafe {
            let leaf = self.node.as_leaf_mut();
            let key = leaf.keys.get_unchecked_mut(self.idx).assume_init_mut();
            let val = leaf.vals.get_unchecked_mut(self.idx).assume_init_mut();
            (key, val)
        }
    }

    /// Replaces the key and value that the KV handle refers to.
    pub fn replace_kv(&mut self, k: K, v: V) -> (K, V) {
        let (key, val) = self.kv_mut();
        (mem::replace(key, k), mem::replace(val, v))
    }
}

impl<K, V, NodeType> Handle<NodeRef<marker::Dying, K, V, NodeType>, marker::KV> {
    /// Extracts the key and value that the KV handle refers to.
    /// # Safety
    /// The node that the handle refers to must not yet have been deallocated.
    pub unsafe fn into_key_val(mut self) -> (K, V) {
        debug_assert!(self.idx < self.node.len());
        let leaf = self.node.as_leaf_dying();
        unsafe {
            let key = leaf.keys.get_unchecked_mut(self.idx).assume_init_read();
            let val = leaf.vals.get_unchecked_mut(self.idx).assume_init_read();
            (key, val)
        }
    }

    /// Drops the key and value that the KV handle refers to.
    /// # Safety
    /// The node that the handle refers to must not yet have been deallocated.
    #[inline]
    pub unsafe fn drop_key_val(mut self) {
        debug_assert!(self.idx < self.node.len());
        let leaf = self.node.as_leaf_dying();
        unsafe {
            leaf.keys.get_unchecked_mut(self.idx).assume_init_drop();
            leaf.vals.get_unchecked_mut(self.idx).assume_init_drop();
        }
    }
}

impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
    /// Helps implementations of `split` for a particular `NodeType`,
    /// by taking care of leaf data.
    fn split_leaf_data(&mut self, new_node: &mut LeafNode<K, V>) -> (K, V) {
        debug_assert!(self.idx < self.node.len());
        let old_len = self.node.len();
        let new_len = old_len - self.idx - 1;
        new_node.len = new_len as u16;
        unsafe {
            let k = self.node.key_area_mut(self.idx).assume_init_read();
            let v = self.node.val_area_mut(self.idx).assume_init_read();

            move_to_slice(
                self.node.key_area_mut(self.idx + 1..old_len),
                &mut new_node.keys[..new_len],
            );
            move_to_slice(
                self.node.val_area_mut(self.idx + 1..old_len),
                &mut new_node.vals[..new_len],
            );

            *self.node.len_mut() = self.idx as u16;
            (k, v)
        }
    }
}

impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> {
    /// Splits the underlying node into three parts:
    ///
    /// - The node is truncated to only contain the key-value pairs to the left of
    ///   this handle.
    /// - The key and value pointed to by this handle are extracted.
    /// - All the key-value pairs to the right of this handle are put into a newly
    ///   allocated node.
    pub fn split<A: Allocator + Clone>(mut self, alloc: A) -> SplitResult<'a, K, V, marker::Leaf> {
        let mut new_node = LeafNode::new(alloc);

        let kv = self.split_leaf_data(&mut new_node);

        let right = NodeRef::from_new_leaf(new_node);
        SplitResult { left: self.node, kv, right }
    }

    /// Removes the key-value pair pointed to by this handle and returns it, along with the edge
    /// that the key-value pair collapsed into.
    pub fn remove(
        mut self,
    ) -> ((K, V), Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>) {
        let old_len = self.node.len();
        unsafe {
            let k = slice_remove(self.node.key_area_mut(..old_len), self.idx);
            let v = slice_remove(self.node.val_area_mut(..old_len), self.idx);
            *self.node.len_mut() = (old_len - 1) as u16;
            ((k, v), self.left_edge())
        }
    }
}

impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> {
    /// Splits the underlying node into three parts:
    ///
    /// - The node is truncated to only contain the edges and key-value pairs to the
    ///   left of this handle.
    /// - The key and value pointed to by this handle are extracted.
    /// - All the edges and key-value pairs to the right of this handle are put into
    ///   a newly allocated node.
    pub fn split<A: Allocator + Clone>(
        mut self,
        alloc: A,
    ) -> SplitResult<'a, K, V, marker::Internal> {
        let old_len = self.node.len();
        unsafe {
            let mut new_node = InternalNode::new(alloc);
            let kv = self.split_leaf_data(&mut new_node.data);
            let new_len = usize::from(new_node.data.len);
            move_to_slice(
                self.node.edge_area_mut(self.idx + 1..old_len + 1),
                &mut new_node.edges[..new_len + 1],
            );

            let height = self.node.height;
            let right = NodeRef::from_new_internal(new_node, height);

            SplitResult { left: self.node, kv, right }
        }
    }
}

/// Represents a session for evaluating and performing a balancing operation
/// around an internal key-value pair.
pub struct BalancingContext<'a, K, V> {
    parent: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV>,
    left_child: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
    right_child: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
}

impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> {
    pub fn consider_for_balancing(self) -> BalancingContext<'a, K, V> {
        let self1 = unsafe { ptr::read(&self) };
        let self2 = unsafe { ptr::read(&self) };
        BalancingContext {
            parent: self,
            left_child: self1.left_edge().descend(),
            right_child: self2.right_edge().descend(),
        }
    }
}

impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
    /// Chooses a balancing context involving the node as a child, thus between
    /// the KV immediately to the left or to the right in the parent node.
    /// Returns an `Err` if there is no parent.
    /// Panics if the parent is empty.
    ///
    /// Prefers the left side, to be optimal if the given node is somehow
    /// underfull, meaning here only that it has fewer elements than its left
    /// sibling and than its right sibling, if they exist. In that case,
    /// merging with the left sibling is faster, since we only need to move
    /// the node's N elements, instead of shifting them to the right and moving
    /// more than N elements in front. Stealing from the left sibling is also
    /// typically faster, since we only need to shift the node's N elements to
    /// the right, instead of shifting at least N of the sibling's elements to
    /// the left.
    pub fn choose_parent_kv(self) -> Result<LeftOrRight<BalancingContext<'a, K, V>>, Self> {
        match unsafe { ptr::read(&self) }.ascend() {
            Ok(parent_edge) => match parent_edge.left_kv() {
                Ok(left_parent_kv) => Ok(LeftOrRight::Left(BalancingContext {
                    parent: unsafe { ptr::read(&left_parent_kv) },
                    left_child: left_parent_kv.left_edge().descend(),
                    right_child: self,
                })),
                Err(parent_edge) => match parent_edge.right_kv() {
                    Ok(right_parent_kv) => Ok(LeftOrRight::Right(BalancingContext {
                        parent: unsafe { ptr::read(&right_parent_kv) },
                        left_child: self,
                        right_child: right_parent_kv.right_edge().descend(),
                    })),
                    Err(_) => unreachable!("empty internal node"),
                },
            },
            Err(root) => Err(root),
        }
    }
}

impl<'a, K, V> BalancingContext<'a, K, V> {
    pub fn left_child_len(&self) -> usize {
        self.left_child.len()
    }

    pub fn right_child_len(&self) -> usize {
        self.right_child.len()
    }

    pub fn into_left_child(self) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
        self.left_child
    }

    pub fn into_right_child(self) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
        self.right_child
    }

    /// Returns whether merging is possible, i.e., whether there is enough room
    /// in a node to combine the central KV with both adjacent child nodes.
    pub fn can_merge(&self) -> bool {
        self.left_child.len() + 1 + self.right_child.len() <= CAPACITY
    }
}

impl<'a, K: 'a, V: 'a> BalancingContext<'a, K, V> {
    /// Performs a merge and lets a closure decide what to return.
    fn do_merge<
        F: FnOnce(
            NodeRef<marker::Mut<'a>, K, V, marker::Internal>,
            NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
        ) -> R,
        R,
        A: Allocator,
    >(
        self,
        result: F,
        alloc: A,
    ) -> R {
        let Handle { node: mut parent_node, idx: parent_idx, _marker } = self.parent;
        let old_parent_len = parent_node.len();
        let mut left_node = self.left_child;
        let old_left_len = left_node.len();
        let mut right_node = self.right_child;
        let right_len = right_node.len();
        let new_left_len = old_left_len + 1 + right_len;

        assert!(new_left_len <= CAPACITY);

        unsafe {
            *left_node.len_mut() = new_left_len as u16;

            let parent_key = slice_remove(parent_node.key_area_mut(..old_parent_len), parent_idx);
            left_node.key_area_mut(old_left_len).write(parent_key);
            move_to_slice(
                right_node.key_area_mut(..right_len),
                left_node.key_area_mut(old_left_len + 1..new_left_len),
            );

            let parent_val = slice_remove(parent_node.val_area_mut(..old_parent_len), parent_idx);
            left_node.val_area_mut(old_left_len).write(parent_val);
            move_to_slice(
                right_node.val_area_mut(..right_len),
                left_node.val_area_mut(old_left_len + 1..new_left_len),
            );

            slice_remove(&mut parent_node.edge_area_mut(..old_parent_len + 1), parent_idx + 1);
            parent_node.correct_childrens_parent_links(parent_idx + 1..old_parent_len);
            *parent_node.len_mut() -= 1;

            if parent_node.height > 1 {
                // SAFETY: the height of the nodes being merged is one below the height
                // of the node of this edge, thus above zero, so they are internal.
                let mut left_node = left_node.reborrow_mut().cast_to_internal_unchecked();
                let mut right_node = right_node.cast_to_internal_unchecked();
                move_to_slice(
                    right_node.edge_area_mut(..right_len + 1),
                    left_node.edge_area_mut(old_left_len + 1..new_left_len + 1),
                );

                left_node.correct_childrens_parent_links(old_left_len + 1..new_left_len + 1);

                alloc.deallocate(right_node.node.cast(), Layout::new::<InternalNode<K, V>>());
            } else {
                alloc.deallocate(right_node.node.cast(), Layout::new::<LeafNode<K, V>>());
            }
        }
        result(parent_node, left_node)
    }

    /// Merges the parent's key-value pair and both adjacent child nodes into
    /// the left child node and returns the shrunk parent node.
    ///
    /// Panics unless we `.can_merge()`.
    pub fn merge_tracking_parent<A: Allocator + Clone>(
        self,
        alloc: A,
    ) -> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
        self.do_merge(|parent, _child| parent, alloc)
    }

    /// Merges the parent's key-value pair and both adjacent child nodes into
    /// the left child node and returns that child node.
    ///
    /// Panics unless we `.can_merge()`.
    pub fn merge_tracking_child<A: Allocator + Clone>(
        self,
        alloc: A,
    ) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
        self.do_merge(|_parent, child| child, alloc)
    }

    /// Merges the parent's key-value pair and both adjacent child nodes into
    /// the left child node and returns the edge handle in that child node
    /// where the tracked child edge ended up,
    ///
    /// Panics unless we `.can_merge()`.
    pub fn merge_tracking_child_edge<A: Allocator + Clone>(
        self,
        track_edge_idx: LeftOrRight<usize>,
        alloc: A,
    ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
        let old_left_len = self.left_child.len();
        let right_len = self.right_child.len();
        assert!(match track_edge_idx {
            LeftOrRight::Left(idx) => idx <= old_left_len,
            LeftOrRight::Right(idx) => idx <= right_len,
        });
        let child = self.merge_tracking_child(alloc);
        let new_idx = match track_edge_idx {
            LeftOrRight::Left(idx) => idx,
            LeftOrRight::Right(idx) => old_left_len + 1 + idx,
        };
        unsafe { Handle::new_edge(child, new_idx) }
    }

    /// Removes a key-value pair from the left child and places it in the key-value storage
    /// of the parent, while pushing the old parent key-value pair into the right child.
    /// Returns a handle to the edge in the right child corresponding to where the original
    /// edge specified by `track_right_edge_idx` ended up.
    pub fn steal_left(
        mut self,
        track_right_edge_idx: usize,
    ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
        self.bulk_steal_left(1);
        unsafe { Handle::new_edge(self.right_child, 1 + track_right_edge_idx) }
    }

    /// Removes a key-value pair from the right child and places it in the key-value storage
    /// of the parent, while pushing the old parent key-value pair onto the left child.
    /// Returns a handle to the edge in the left child specified by `track_left_edge_idx`,
    /// which didn't move.
    pub fn steal_right(
        mut self,
        track_left_edge_idx: usize,
    ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
        self.bulk_steal_right(1);
        unsafe { Handle::new_edge(self.left_child, track_left_edge_idx) }
    }

    /// This does stealing similar to `steal_left` but steals multiple elements at once.
    pub fn bulk_steal_left(&mut self, count: usize) {
        assert!(count > 0);
        unsafe {
            let left_node = &mut self.left_child;
            let old_left_len = left_node.len();
            let right_node = &mut self.right_child;
            let old_right_len = right_node.len();

            // Make sure that we may steal safely.
            assert!(old_right_len + count <= CAPACITY);
            assert!(old_left_len >= count);

            let new_left_len = old_left_len - count;
            let new_right_len = old_right_len + count;
            *left_node.len_mut() = new_left_len as u16;
            *right_node.len_mut() = new_right_len as u16;

            // Move leaf data.
            {
                // Make room for stolen elements in the right child.
                slice_shr(right_node.key_area_mut(..new_right_len), count);
                slice_shr(right_node.val_area_mut(..new_right_len), count);

                // Move elements from the left child to the right one.
                move_to_slice(
                    left_node.key_area_mut(new_left_len + 1..old_left_len),
                    right_node.key_area_mut(..count - 1),
                );
                move_to_slice(
                    left_node.val_area_mut(new_left_len + 1..old_left_len),
                    right_node.val_area_mut(..count - 1),
                );

                // Move the left-most stolen pair to the parent.
                let k = left_node.key_area_mut(new_left_len).assume_init_read();
                let v = left_node.val_area_mut(new_left_len).assume_init_read();
                let (k, v) = self.parent.replace_kv(k, v);

                // Move parent's key-value pair to the right child.
                right_node.key_area_mut(count - 1).write(k);
                right_node.val_area_mut(count - 1).write(v);
            }

            match (left_node.reborrow_mut().force(), right_node.reborrow_mut().force()) {
                (ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => {
                    // Make room for stolen edges.
                    slice_shr(right.edge_area_mut(..new_right_len + 1), count);

                    // Steal edges.
                    move_to_slice(
                        left.edge_area_mut(new_left_len + 1..old_left_len + 1),
                        right.edge_area_mut(..count),
                    );

                    right.correct_childrens_parent_links(0..new_right_len + 1);
                }
                (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
                _ => unreachable!(),
            }
        }
    }

    /// The symmetric clone of `bulk_steal_left`.
    pub fn bulk_steal_right(&mut self, count: usize) {
        assert!(count > 0);
        unsafe {
            let left_node = &mut self.left_child;
            let old_left_len = left_node.len();
            let right_node = &mut self.right_child;
            let old_right_len = right_node.len();

            // Make sure that we may steal safely.
            assert!(old_left_len + count <= CAPACITY);
            assert!(old_right_len >= count);

            let new_left_len = old_left_len + count;
            let new_right_len = old_right_len - count;
            *left_node.len_mut() = new_left_len as u16;
            *right_node.len_mut() = new_right_len as u16;

            // Move leaf data.
            {
                // Move the right-most stolen pair to the parent.
                let k = right_node.key_area_mut(count - 1).assume_init_read();
                let v = right_node.val_area_mut(count - 1).assume_init_read();
                let (k, v) = self.parent.replace_kv(k, v);

                // Move parent's key-value pair to the left child.
                left_node.key_area_mut(old_left_len).write(k);
                left_node.val_area_mut(old_left_len).write(v);

                // Move elements from the right child to the left one.
                move_to_slice(
                    right_node.key_area_mut(..count - 1),
                    left_node.key_area_mut(old_left_len + 1..new_left_len),
                );
                move_to_slice(
                    right_node.val_area_mut(..count - 1),
                    left_node.val_area_mut(old_left_len + 1..new_left_len),
                );

                // Fill gap where stolen elements used to be.
                slice_shl(right_node.key_area_mut(..old_right_len), count);
                slice_shl(right_node.val_area_mut(..old_right_len), count);
            }

            match (left_node.reborrow_mut().force(), right_node.reborrow_mut().force()) {
                (ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => {
                    // Steal edges.
                    move_to_slice(
                        right.edge_area_mut(..count),
                        left.edge_area_mut(old_left_len + 1..new_left_len + 1),
                    );

                    // Fill gap where stolen edges used to be.
                    slice_shl(right.edge_area_mut(..old_right_len + 1), count);

                    left.correct_childrens_parent_links(old_left_len + 1..new_left_len + 1);
                    right.correct_childrens_parent_links(0..new_right_len + 1);
                }
                (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
                _ => unreachable!(),
            }
        }
    }
}

impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> {
    pub fn forget_node_type(
        self,
    ) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::Edge> {
        unsafe { Handle::new_edge(self.node.forget_type(), self.idx) }
    }
}

impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge> {
    pub fn forget_node_type(
        self,
    ) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::Edge> {
        unsafe { Handle::new_edge(self.node.forget_type(), self.idx) }
    }
}

impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::KV> {
    pub fn forget_node_type(
        self,
    ) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV> {
        unsafe { Handle::new_kv(self.node.forget_type(), self.idx) }
    }
}

impl<BorrowType, K, V, Type> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, Type> {
    /// Checks whether the underlying node is an `Internal` node or a `Leaf` node.
    pub fn force(
        self,
    ) -> ForceResult<
        Handle<NodeRef<BorrowType, K, V, marker::Leaf>, Type>,
        Handle<NodeRef<BorrowType, K, V, marker::Internal>, Type>,
    > {
        match self.node.force() {
            ForceResult::Leaf(node) => {
                ForceResult::Leaf(Handle { node, idx: self.idx, _marker: PhantomData })
            }
            ForceResult::Internal(node) => {
                ForceResult::Internal(Handle { node, idx: self.idx, _marker: PhantomData })
            }
        }
    }
}

impl<'a, K, V, Type> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, Type> {
    /// Unsafely asserts to the compiler the static information that the handle's node is a `Leaf`.
    pub unsafe fn cast_to_leaf_unchecked(
        self,
    ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, Type> {
        let node = unsafe { self.node.cast_to_leaf_unchecked() };
        Handle { node, idx: self.idx, _marker: PhantomData }
    }
}

impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
    /// Move the suffix after `self` from one node to another one. `right` must be empty.
    /// The first edge of `right` remains unchanged.
    pub fn move_suffix(
        &mut self,
        right: &mut NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
    ) {
        unsafe {
            let new_left_len = self.idx;
            let mut left_node = self.reborrow_mut().into_node();
            let old_left_len = left_node.len();

            let new_right_len = old_left_len - new_left_len;
            let mut right_node = right.reborrow_mut();

            assert!(right_node.len() == 0);
            assert!(left_node.height == right_node.height);

            if new_right_len > 0 {
                *left_node.len_mut() = new_left_len as u16;
                *right_node.len_mut() = new_right_len as u16;

                move_to_slice(
                    left_node.key_area_mut(new_left_len..old_left_len),
                    right_node.key_area_mut(..new_right_len),
                );
                move_to_slice(
                    left_node.val_area_mut(new_left_len..old_left_len),
                    right_node.val_area_mut(..new_right_len),
                );
                match (left_node.force(), right_node.force()) {
                    (ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => {
                        move_to_slice(
                            left.edge_area_mut(new_left_len + 1..old_left_len + 1),
                            right.edge_area_mut(1..new_right_len + 1),
                        );
                        right.correct_childrens_parent_links(1..new_right_len + 1);
                    }
                    (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
                    _ => unreachable!(),
                }
            }
        }
    }
}

pub enum ForceResult<Leaf, Internal> {
    Leaf(Leaf),
    Internal(Internal),
}

/// Result of insertion, when a node needed to expand beyond its capacity.
pub struct SplitResult<'a, K, V, NodeType> {
    // Altered node in existing tree with elements and edges that belong to the left of `kv`.
    pub left: NodeRef<marker::Mut<'a>, K, V, NodeType>,
    // Some key and value that existed before and were split off, to be inserted elsewhere.
    pub kv: (K, V),
    // Owned, unattached, new node with elements and edges that belong to the right of `kv`.
    pub right: NodeRef<marker::Owned, K, V, NodeType>,
}

impl<'a, K, V> SplitResult<'a, K, V, marker::Leaf> {
    pub fn forget_node_type(self) -> SplitResult<'a, K, V, marker::LeafOrInternal> {
        SplitResult { left: self.left.forget_type(), kv: self.kv, right: self.right.forget_type() }
    }
}

impl<'a, K, V> SplitResult<'a, K, V, marker::Internal> {
    pub fn forget_node_type(self) -> SplitResult<'a, K, V, marker::LeafOrInternal> {
        SplitResult { left: self.left.forget_type(), kv: self.kv, right: self.right.forget_type() }
    }
}

pub mod marker {
    use core::marker::PhantomData;

    pub enum Leaf {}
    pub enum Internal {}
    pub enum LeafOrInternal {}

    pub enum Owned {}
    pub enum Dying {}
    pub struct Immut<'a>(PhantomData<&'a ()>);
    pub struct Mut<'a>(PhantomData<&'a mut ()>);
    pub struct ValMut<'a>(PhantomData<&'a mut ()>);

    pub trait BorrowType {
        // If node references of this borrow type allow traversing to other
        // nodes in the tree, this constant can be evaluated. Thus reading it
        // serves as a compile-time assertion.
        const TRAVERSAL_PERMIT: () = ();
    }
    impl BorrowType for Owned {
        // Reject evaluation, because traversal isn't needed. Instead traversal
        // happens using the result of `borrow_mut`.
        // By disabling traversal, and only creating new references to roots,
        // we know that every reference of the `Owned` type is to a root node.
        const TRAVERSAL_PERMIT: () = panic!();
    }
    impl BorrowType for Dying {}
    impl<'a> BorrowType for Immut<'a> {}
    impl<'a> BorrowType for Mut<'a> {}
    impl<'a> BorrowType for ValMut<'a> {}

    pub enum KV {}
    pub enum Edge {}
}

/// Inserts a value into a slice of initialized elements followed by one uninitialized element.
///
/// # Safety
/// The slice has more than `idx` elements.
unsafe fn slice_insert<T>(slice: &mut [MaybeUninit<T>], idx: usize, val: T) {
    unsafe {
        let len = slice.len();
        debug_assert!(len > idx);
        let slice_ptr = slice.as_mut_ptr();
        if len > idx + 1 {
            ptr::copy(slice_ptr.add(idx), slice_ptr.add(idx + 1), len - idx - 1);
        }
        (*slice_ptr.add(idx)).write(val);
    }
}

/// Removes and returns a value from a slice of all initialized elements, leaving behind one
/// trailing uninitialized element.
///
/// # Safety
/// The slice has more than `idx` elements.
unsafe fn slice_remove<T>(slice: &mut [MaybeUninit<T>], idx: usize) -> T {
    unsafe {
        let len = slice.len();
        debug_assert!(idx < len);
        let slice_ptr = slice.as_mut_ptr();
        let ret = (*slice_ptr.add(idx)).assume_init_read();
        ptr::copy(slice_ptr.add(idx + 1), slice_ptr.add(idx), len - idx - 1);
        ret
    }
}

/// Shifts the elements in a slice `distance` positions to the left.
///
/// # Safety
/// The slice has at least `distance` elements.
unsafe fn slice_shl<T>(slice: &mut [MaybeUninit<T>], distance: usize) {
    unsafe {
        let slice_ptr = slice.as_mut_ptr();
        ptr::copy(slice_ptr.add(distance), slice_ptr, slice.len() - distance);
    }
}

/// Shifts the elements in a slice `distance` positions to the right.
///
/// # Safety
/// The slice has at least `distance` elements.
unsafe fn slice_shr<T>(slice: &mut [MaybeUninit<T>], distance: usize) {
    unsafe {
        let slice_ptr = slice.as_mut_ptr();
        ptr::copy(slice_ptr, slice_ptr.add(distance), slice.len() - distance);
    }
}

/// Moves all values from a slice of initialized elements to a slice
/// of uninitialized elements, leaving behind `src` as all uninitialized.
/// Works like `dst.copy_from_slice(src)` but does not require `T` to be `Copy`.
fn move_to_slice<T>(src: &mut [MaybeUninit<T>], dst: &mut [MaybeUninit<T>]) {
    assert!(src.len() == dst.len());
    unsafe {
        ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), src.len());
    }
}

#[cfg(test)]
mod tests;