1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
use crate::iter::{FusedIterator, TrustedLen, UncheckedIterator};
use crate::mem::ManuallyDrop;
use crate::num::NonZero;
/// Creates a new iterator that repeats a single element a given number of times.
///
/// The `repeat_n()` function repeats a single value exactly `n` times.
///
/// This is very similar to using [`repeat()`] with [`Iterator::take()`],
/// but there are two differences:
/// - `repeat_n()` can return the original value, rather than always cloning.
/// - `repeat_n()` produces an [`ExactSizeIterator`].
///
/// [`repeat()`]: crate::iter::repeat
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::iter;
///
/// // four of the number four:
/// let mut four_fours = iter::repeat_n(4, 4);
///
/// assert_eq!(Some(4), four_fours.next());
/// assert_eq!(Some(4), four_fours.next());
/// assert_eq!(Some(4), four_fours.next());
/// assert_eq!(Some(4), four_fours.next());
///
/// // no more fours
/// assert_eq!(None, four_fours.next());
/// ```
///
/// For non-`Copy` types,
///
/// ```
/// use std::iter;
///
/// let v: Vec<i32> = Vec::with_capacity(123);
/// let mut it = iter::repeat_n(v, 5);
///
/// for i in 0..4 {
/// // It starts by cloning things
/// let cloned = it.next().unwrap();
/// assert_eq!(cloned.len(), 0);
/// assert_eq!(cloned.capacity(), 0);
/// }
///
/// // ... but the last item is the original one
/// let last = it.next().unwrap();
/// assert_eq!(last.len(), 0);
/// assert_eq!(last.capacity(), 123);
///
/// // ... and now we're done
/// assert_eq!(None, it.next());
/// ```
#[inline]
#[stable(feature = "iter_repeat_n", since = "1.82.0")]
pub fn repeat_n<T: Clone>(element: T, count: usize) -> RepeatN<T> {
let mut element = ManuallyDrop::new(element);
if count == 0 {
// SAFETY: we definitely haven't dropped it yet, since we only just got
// passed it in, and because the count is zero the instance we're about
// to create won't drop it, so to avoid leaking we need to now.
unsafe { ManuallyDrop::drop(&mut element) };
}
RepeatN { element, count }
}
/// An iterator that repeats an element an exact number of times.
///
/// This `struct` is created by the [`repeat_n()`] function.
/// See its documentation for more.
#[derive(Clone, Debug)]
#[stable(feature = "iter_repeat_n", since = "1.82.0")]
pub struct RepeatN<A> {
count: usize,
// Invariant: has been dropped iff count == 0.
element: ManuallyDrop<A>,
}
impl<A> RepeatN<A> {
/// If we haven't already dropped the element, return it in an option.
///
/// Clears the count so it won't be dropped again later.
#[inline]
fn take_element(&mut self) -> Option<A> {
if self.count > 0 {
self.count = 0;
// SAFETY: We just set count to zero so it won't be dropped again,
// and it used to be non-zero so it hasn't already been dropped.
unsafe { Some(ManuallyDrop::take(&mut self.element)) }
} else {
None
}
}
}
#[stable(feature = "iter_repeat_n", since = "1.82.0")]
impl<A> Drop for RepeatN<A> {
fn drop(&mut self) {
self.take_element();
}
}
#[stable(feature = "iter_repeat_n", since = "1.82.0")]
impl<A: Clone> Iterator for RepeatN<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
if self.count > 0 {
// SAFETY: Just checked it's not empty
unsafe { Some(self.next_unchecked()) }
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
#[inline]
fn advance_by(&mut self, skip: usize) -> Result<(), NonZero<usize>> {
let len = self.count;
if skip >= len {
self.take_element();
}
if skip > len {
// SAFETY: we just checked that the difference is positive
Err(unsafe { NonZero::new_unchecked(skip - len) })
} else {
self.count = len - skip;
Ok(())
}
}
#[inline]
fn last(mut self) -> Option<A> {
self.take_element()
}
#[inline]
fn count(self) -> usize {
self.len()
}
}
#[stable(feature = "iter_repeat_n", since = "1.82.0")]
impl<A: Clone> ExactSizeIterator for RepeatN<A> {
fn len(&self) -> usize {
self.count
}
}
#[stable(feature = "iter_repeat_n", since = "1.82.0")]
impl<A: Clone> DoubleEndedIterator for RepeatN<A> {
#[inline]
fn next_back(&mut self) -> Option<A> {
self.next()
}
#[inline]
fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
self.advance_by(n)
}
#[inline]
fn nth_back(&mut self, n: usize) -> Option<A> {
self.nth(n)
}
}
#[stable(feature = "iter_repeat_n", since = "1.82.0")]
impl<A: Clone> FusedIterator for RepeatN<A> {}
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A: Clone> TrustedLen for RepeatN<A> {}
#[stable(feature = "iter_repeat_n", since = "1.82.0")]
impl<A: Clone> UncheckedIterator for RepeatN<A> {
#[inline]
unsafe fn next_unchecked(&mut self) -> Self::Item {
// SAFETY: The caller promised the iterator isn't empty
self.count = unsafe { self.count.unchecked_sub(1) };
if self.count == 0 {
// SAFETY: the check above ensured that the count used to be non-zero,
// so element hasn't been dropped yet, and we just lowered the count to
// zero so it won't be dropped later, and thus it's okay to take it here.
unsafe { ManuallyDrop::take(&mut self.element) }
} else {
A::clone(&self.element)
}
}
}