1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
//! Similar to `#[serde(flatten)]` but works with [`serde_ignored`]
//!
//! Our approach to deserialize a [`Flatten`] is as follows:
//!
//!  * We tell the input data format (underlying deserializer) that we want a map.
//!  * In our visitor, we visit each key in the map in order
//!  * For each key, we consult `Flattenable::has_field` to find out which child it's in
//!    (fields in T shadow fields in U, as with serde),
//!    and store the key and the value in the appropriate [`Portion`].
//!    (We must store the value as a [`serde_value::Value`]
//!    since we don't know what type it should be,
//!    and can't know until we are ready to enter T and U's [`Deserialize`] impls.)
//!  * If it's in neither T nor U, we explicitly ignore the value
//!  * When we've processed all the fields, we call the actual deserialisers for T and U:
//!    we take on the role of the data format, giving each of T and U a map.
//!
//! From the point of view of T and U, we each offer them a subset of the fields,
//! having already rendered the keys to strings and the values to `Value`.
//!
//! From the point of view of the data format (which might be a `serde_ignored` proxy)
//! we consume the union of the fields, and ignore the rest.
//!
//! ### Rationale and alternatives
//!
//! The key difficulty is this:
//! we want to call [`Deserializer::deserialize_ignored_any`]
//! on our input data format for precisely the fields which neither T nor U want.
//! We must achieve this somehow using information from T or U.
//! If we tried to use only the [`Deserialize`] impls,
//! the only way to detect this is to call their `deserialize` methods
//! and watch to see if they in turn call `deserialize_ignored_any`.
//! But we need to be asking each of T and U this question for each field:
//! the shape of [`MapAccess`] puts the data structure in charge of sequencing.
//! So we would need to somehow suspend `T`'s deserialisation,
//! and call `U`'s, and then suspend `U`s, and go back to `T`.
//!
//! Other possibilities that seemed worse:
//!
//!  * Use threads.
//!    We could spawn a thread for each of `T` and `U`,
//!    allowing us to run them in parallel and control their execution flow.
//!
//!  * Use coroutines eg. [corosensei](https://lib.rs/crates/corosensei)
//!    (by Amanieu, author of hashbrown etc.)
//!
//!  * Instead of suspending and restarting `T` and `U`'s deserialisation,
//!    discard the partially-deserialised `T` and `U` and restart them each time
//!    (with cloned copies of the `Value`s).  This is O(n^2) and involves much boxing.
//!
//! # References
//!
//!  * Tickets against `serde-ignored`:
//!    <https://github.com/dtolnay/serde-ignored/issues/17>
//!    <https://github.com/dtolnay/serde-ignored/issues/10>
//!
//!  * Workaround with `HashMap` that doesn't quite work right:
//!    <https://github.com/dtolnay/serde-ignored/issues/10#issuecomment-1044058310>
//!    <https://github.com/serde-rs/serde/issues/2176>
//!
//!  * Discussion in Tor Project gitlab re Arti configuration:
//!    <https://gitlab.torproject.org/tpo/core/arti/-/merge_requests/1599#note_2944510>

use std::collections::VecDeque;
use std::fmt::{self, Display};
use std::marker::PhantomData;
use std::mem;

use derive_adhoc::{define_derive_adhoc, derive_adhoc, Adhoc};
use paste::paste;
use serde::de::{self, DeserializeSeed, Deserializer, Error as _, IgnoredAny, MapAccess, Visitor};
use serde::{Deserialize, Serialize, Serializer};
use serde_value::Value;
use thiserror::Error;

// Must come first so we can refer to it in docs
define_derive_adhoc! {
    /// Derives [`Flattenable`] for a struct
    ///
    /// # Limitations
    ///
    /// Some serde attributes might not be supported.
    /// For example, ones which make the type no longer deserialize as a named fields struct.
    /// This will be detected by a macro-generated always-failing test case.
    ///
    /// Most serde attributes (eg field renaming and ignoring) will be fine.
    ///
    /// # Example
    ///
    /// ```
    /// use serde::{Serialize, Deserialize};
    /// use derive_adhoc::Adhoc;
    /// use tor_config::derive_adhoc_template_Flattenable;
    ///
    /// #[derive(Serialize, Deserialize, Debug, Adhoc)]
    /// #[derive_adhoc(Flattenable)]
    /// struct A {
    ///     a: i32,
    /// }
    /// ```
    //
    // Note re semver:
    //
    // We re-export derive-adhoc's template engine, in the manner discussed by the d-a docs.
    // See
    //  https://docs.rs/derive-adhoc/latest/derive_adhoc/macro.define_derive_adhoc.html#exporting-a-template-for-use-by-other-crates
    //
    // The semantic behaviour of the template *does* have semver implications.
    pub Flattenable for struct, expect items =

    impl tor_config::Flattenable for $ttype {
        fn has_field(s: &str) -> bool {
            let fnames = tor_config::flattenable_extract_fields::<'_, Self>();
            IntoIterator::into_iter(fnames).any(|f| *f == s)

        }
    }

    // Detect if flattenable_extract_fields panics
    #[test]
    fn $<flattenable_test_ ${snake_case $tname}>() {
        // Using $ttype::has_field avoids writing out again
        // the call to flattenable_extract_fields, with all its generics,
        // and thereby ensures that we didn't have a mismatch that
        // allows broken impls to slip through.
        // (We know the type is at least similar because we go via the Flattenable impl.)
        let _: bool = <$ttype as tor_config::Flattenable>::has_field("");
    }
}

/// Helper for flattening deserialisation, compatible with [`serde_ignored`]
///
/// A combination of two structs `T` and `U`.
///
/// The serde representation flattens both structs into a single, larger, struct.
///
/// Furthermore, unlike plain use of `#[serde(flatten)]`,
/// `serde_ignored` will still detect fields which appear in serde input
/// but which form part of neither `T` nor `U`.
///
/// `T` and `U` must both be [`Flattenable`].
/// Usually that trait should be derived with
/// the [`Flattenable macro`](derive_adhoc_template_Flattenable).
///
/// If it's desired to combine more than two structs, `Flatten` can be nested.
///
/// # Limitations
///
/// Field name overlaps are not detected.
/// Fields which appear in both structs
/// will be processed as part of `T` during deserialization.
/// They will be internally presented as duplicate fields during serialization,
/// with the outcome depending on the data format implementation.
///
/// # Example
///
/// ```
/// use serde::{Serialize, Deserialize};
/// use derive_adhoc::Adhoc;
/// use tor_config::{Flatten, derive_adhoc_template_Flattenable};
///
/// #[derive(Serialize, Deserialize, Debug, Adhoc, Eq, PartialEq)]
/// #[derive_adhoc(Flattenable)]
/// struct A {
///     a: i32,
/// }
///
/// #[derive(Serialize, Deserialize, Debug, Adhoc, Eq, PartialEq)]
/// #[derive_adhoc(Flattenable)]
/// struct B {
///     b: String,
/// }
///
/// let combined: Flatten<A,B> = toml::from_str(r#"
///     a = 42
///     b = "hello"
/// "#).unwrap();
///
/// assert_eq!(
///    combined,
///    Flatten(A { a: 42 }, B { b: "hello".into() }),
/// );
/// ```
//
// We derive Adhoc on Flatten itself so we can use
// truly-adhoc derive_adhoc! to iterate over Flatten's two fields.
// This avoids us accidentally (for example) checking T's fields for passing to U.
#[derive(Adhoc, Debug, Clone, Copy, Hash, Ord, PartialOrd, Eq, PartialEq, Default)]
#[allow(clippy::exhaustive_structs)]
pub struct Flatten<T, U>(pub T, pub U);

/// Types that can be used with [`Flatten`]
///
/// Usually, derived with
/// the [`Flattenable derive-adhoc macro`](derive_adhoc_template_Flattenable).
pub trait Flattenable {
    /// Does this type have a field named `s` ?
    fn has_field(f: &str) -> bool;
}

//========== local helper macros ==========

/// Implement `deserialize_$what` as a call to `deserialize_any`.
///
/// `$args`, if provided, are any other formal arguments, not including the `Visitor`
macro_rules! call_any { { $what:ident $( $args:tt )* } => { paste!{
    fn [<deserialize_ $what>]<V>(self $( $args )*, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: Visitor<'de>,
    {
        self.deserialize_any(visitor)
    }
} } }

/// Implement most `deserialize_*` as calls to `deserialize_any`.
///
/// The exceptions are the ones we need to handle specially in any of our types,
/// namely `any` itself and `struct`.
macro_rules! call_any_for_rest { {} => {
    call_any!(map);
    call_any!(bool);
    call_any!(byte_buf);
    call_any!(bytes);
    call_any!(char);
    call_any!(f32);
    call_any!(f64);
    call_any!(i128);
    call_any!(i16);
    call_any!(i32);
    call_any!(i64);
    call_any!(i8);
    call_any!(identifier);
    call_any!(ignored_any);
    call_any!(option);
    call_any!(seq);
    call_any!(str);
    call_any!(string);
    call_any!(u128);
    call_any!(u16);
    call_any!(u32);
    call_any!(u64);
    call_any!(u8);
    call_any!(unit);

    call_any!(enum, _: &'static str, _: FieldList);
    call_any!(newtype_struct, _: &'static str );
    call_any!(tuple, _: usize );
    call_any!(tuple_struct, _: &'static str, _: usize );
    call_any!(unit_struct, _: &'static str );
} }

//========== Implementations of Serialize and Flattenable ==========

derive_adhoc! {
    Flatten expect items:

    impl<T, U> Serialize for Flatten<T, U>
    where $( $ftype: Serialize, )
    {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where S: Serializer
        {
            /// version of outer `Flatten` containing references
            ///
            /// We give it the same name because the name is visible via serde
            ///
            /// The problems with `#[serde(flatten)]` don't apply to serialisation,
            /// because we're not trying to track ignored fields.
            /// But we can't just apply `#[serde(flatten)]` to `Flatten`
            /// since it doesn't work with tuple structs.
            #[derive(Serialize)]
            struct Flatten<'r, T, U> {
              $(
                #[serde(flatten)]
                $fpatname: &'r $ftype,
              )
            }

            Flatten {
              $(
                $fpatname: &self.$fname,
              )
            }
            .serialize(serializer)
        }
    }

    /// `Flatten` may be nested
    impl<T, U> Flattenable for Flatten<T, U>
    where $( $ftype: Flattenable, )
    {
        fn has_field(f: &str) -> bool {
            $(
                $ftype::has_field(f)
                    ||
              )
                false
        }
    }
}

//========== Deserialize implementation ==========

/// The keys and values we are to direct to a particular child
///
/// See the module-level comment for the algorithm.
#[derive(Default)]
struct Portion(VecDeque<(String, Value)>);

/// [`de::Visitor`] for `Flatten`
struct FlattenVisitor<T, U>(PhantomData<(T, U)>);

/// Wrapper for a field name, impls [`de::Deserializer`]
struct Key(String);

/// Type alias for reified error
///
/// [`serde_value::DeserializerError`] has one variant
/// for each of the constructors of [`de::Error`].
type FlattenError = serde_value::DeserializerError;

//----- part 1: disassembly -----

derive_adhoc! {
    Flatten expect items:

    // where constraint on the Deserialize impl
    ${define FLATTENABLE $( $ftype: Deserialize<'de> + Flattenable, )}

    impl<'de, T, U> Deserialize<'de> for Flatten<T, U>
    where $FLATTENABLE
    {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where D: Deserializer<'de>
        {
            deserializer.deserialize_map(FlattenVisitor(PhantomData))
        }
    }

    impl<'de, T, U> Visitor<'de> for FlattenVisitor<T,U>
    where $FLATTENABLE
    {
        type Value = Flatten<T, U>;

        fn expecting(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            write!(f, "map (for struct)")
        }

        fn visit_map<A>(self, mut mapa: A) -> Result<Self::Value, A::Error>
        where A: MapAccess<'de>
        {
            // See the module-level comment for an explanation.

            // $P is a local variable named after T/U: `p_t` or `p_u`, as appropriate
            ${define P $<p_ $fname>}

            ${for fields { let mut $P = Portion::default(); }}

            #[allow(clippy::suspicious_else_formatting)] // this is the least bad layout
            while let Some(k) = mapa.next_key::<String>()? {
              $(
                 if $ftype::has_field(&k) {
                    let v: Value = mapa.next_value()?;
                    $P.0.push_back((k, v));
                    continue;
                }
                else
              )
                {
                     let _: IgnoredAny = mapa.next_value()?;
                }
            }

            Flatten::assemble( ${for fields { $P, }} )
                .map_err(A::Error::custom)
        }
    }
}

//----- part 2: reassembly -----

derive_adhoc! {
    Flatten expect items:

    impl<'de, T, U> Flatten<T, U>
    where $( $ftype: Deserialize<'de>, )
    {
        /// Assemble a `Flatten` out of the partition of its keys and values
        ///
        /// Uses `Portion`'s `Deserializer` impl and T and U's `Deserialize`
        fn assemble(
          $(
            $fpatname: Portion,
          )
        ) -> Result<Self, FlattenError> {
            Ok(Flatten(
              $(
                $ftype::deserialize($fpatname)?,
              )
            ))
        }
    }
}

impl<'de> Deserializer<'de> for Portion {
    type Error = FlattenError;

    fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: Visitor<'de>,
    {
        visitor.visit_map(self)
    }

    call_any!(struct, _: &'static str, _: FieldList);
    call_any_for_rest!();
}

impl<'de> MapAccess<'de> for Portion {
    type Error = FlattenError;

    fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
    where
        K: DeserializeSeed<'de>,
    {
        let Some(entry) = self.0.get_mut(0) else {
            return Ok(None);
        };
        let k = mem::take(&mut entry.0);
        let k: K::Value = seed.deserialize(Key(k))?;
        Ok(Some(k))
    }

    fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
    where
        V: DeserializeSeed<'de>,
    {
        let v = self
            .0
            .pop_front()
            .expect("next_value called inappropriately")
            .1;
        let r = seed.deserialize(v)?;
        Ok(r)
    }
}

impl<'de> Deserializer<'de> for Key {
    type Error = FlattenError;

    fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
    where
        V: Visitor<'de>,
    {
        visitor.visit_string(self.0)
    }

    call_any!(struct, _: &'static str, _: FieldList);
    call_any_for_rest!();
}

//========== Field extractor ==========

/// List of fields, appears in several APIs here
type FieldList = &'static [&'static str];

/// Stunt "data format" which we use for extracting fields for derived `Flattenable` impls
///
/// The field extraction works as follows:
///  * We ask serde to deserialize `$ttype` from a `FieldExtractor`
///  * We expect the serde-macro-generated `Deserialize` impl to call `deserialize_struct`
///  * We return the list of fields to match up as an error
struct FieldExtractor;

/// Error resulting from successful operation of a [`FieldExtractor`]
///
/// Existence of this error is a *success*.
/// Unexpected behaviour by the type's serde implementation causes panics, not errors.
#[derive(Error, Debug)]
#[error("Flattenable macro test gave error, so test passed successfuly")]
struct FieldExtractorSuccess(FieldList);

/// Extract fields of a struct, as viewed by `serde`
///
/// # Performance
///
/// In release builds, is very fast - all the serde nonsense boils off.
/// In debug builds, maybe a hundred instructions, so not ideal,
/// but it is at least O(1) since it doesn't have any loops.
///
/// # STABILITY WARNING
///
/// This function is `pub` but it is `#[doc(hidden)]`.
/// The only legitimate use is via the `Flattenable` macro.
/// There are **NO SEMVER GUARANTEES**
///
/// # Panics
///
/// Will panic on types whose serde field list cannot be simply extracted via serde,
/// which will include things that aren't named fields structs,
/// might include types decorated with unusual serde annotations.
pub fn flattenable_extract_fields<'de, T: Deserialize<'de>>() -> FieldList {
    let notional_input = FieldExtractor;
    let FieldExtractorSuccess(fields) = T::deserialize(notional_input)
        .map(|_| ())
        .expect_err("unexpected success deserializing from FieldExtractor!");
    fields
}

impl de::Error for FieldExtractorSuccess {
    fn custom<E>(e: E) -> Self
    where
        E: Display,
    {
        panic!("Flattenable macro test failed - some *other* serde error: {e}");
    }
}

impl<'de> Deserializer<'de> for FieldExtractor {
    type Error = FieldExtractorSuccess;

    fn deserialize_struct<V>(
        self,
        _name: &'static str,
        fields: FieldList,
        _visitor: V,
    ) -> Result<V::Value, Self::Error>
    where
        V: Visitor<'de>,
    {
        Err(FieldExtractorSuccess(fields))
    }

    fn deserialize_any<V>(self, _: V) -> Result<V::Value, Self::Error>
    where
        V: Visitor<'de>,
    {
        panic!("test failed: Flattennable misimplemented by macros!");
    }

    call_any_for_rest!();
}

//========== tests ==========

#[cfg(test)]
mod test {
    // @@ begin test lint list maintained by maint/add_warning @@
    #![allow(clippy::bool_assert_comparison)]
    #![allow(clippy::clone_on_copy)]
    #![allow(clippy::dbg_macro)]
    #![allow(clippy::print_stderr)]
    #![allow(clippy::print_stdout)]
    #![allow(clippy::single_char_pattern)]
    #![allow(clippy::unwrap_used)]
    #![allow(clippy::unchecked_duration_subtraction)]
    #![allow(clippy::useless_vec)]
    #![allow(clippy::needless_pass_by_value)]
    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
    use super::*;
    use crate as tor_config; // for the benefit of the macros

    use std::collections::HashMap;

    #[derive(Serialize, Deserialize, Debug, Adhoc, Eq, PartialEq)]
    #[derive_adhoc(Flattenable)]
    struct A {
        a: i32,
        m: HashMap<String, String>,
    }

    #[derive(Serialize, Deserialize, Debug, Adhoc, Eq, PartialEq)]
    #[derive_adhoc(Flattenable)]
    struct B {
        b: i32,
        v: Vec<String>,
    }

    #[derive(Serialize, Deserialize, Debug, Adhoc, Eq, PartialEq)]
    #[derive_adhoc(Flattenable)]
    struct C {
        c: HashMap<String, String>,
    }

    const TEST_INPUT: &str = r#"
        a = 42

        m.one = "unum"
        m.two = "bis"

        b = 99
        v = ["hi", "ho"]

        spurious = 66

        c.zed = "final"
    "#;

    fn test_input() -> toml::Value {
        toml::from_str(TEST_INPUT).unwrap()
    }
    fn simply<'de, T: Deserialize<'de>>() -> T {
        test_input().try_into().unwrap()
    }
    fn with_ignored<'de, T: Deserialize<'de>>() -> (T, Vec<String>) {
        let mut ignored = vec![];
        let f = serde_ignored::deserialize(
            test_input(), //
            |path| ignored.push(path.to_string()),
        )
        .unwrap();
        (f, ignored)
    }

    #[test]
    fn plain() {
        let f: Flatten<A, B> = test_input().try_into().unwrap();
        assert_eq!(f, Flatten(simply(), simply()));
    }

    #[test]
    fn ignored() {
        let (f, ignored) = with_ignored::<Flatten<A, B>>();
        assert_eq!(f, simply());
        assert_eq!(ignored, ["c", "spurious"]);
    }

    #[test]
    fn nested() {
        let (f, ignored) = with_ignored::<Flatten<A, Flatten<B, C>>>();
        assert_eq!(f, simply());
        assert_eq!(ignored, ["spurious"]);
    }

    #[test]
    fn ser() {
        let f: Flatten<A, Flatten<B, C>> = simply();

        assert_eq!(
            serde_json::to_value(f).unwrap(),
            serde_json::json!({
                "a": 42,
                "m": {
                    "one": "unum",
                    "two": "bis"
                },
                "b": 99,
                "v": [
                    "hi",
                    "ho"
                ],
                "c": {
                    "zed": "final"
                }
            }),
        );
    }

    /// This function exists only so we can disassemble it.
    ///
    /// To see what the result looks like in a release build:
    ///
    ///  * `RUSTFLAGS=-g cargo test -p tor-config --all-features --release -- --nocapture flattenable_extract_fields_a_test`
    ///  * Observe the binary that's run, eg `Running unittests src/lib.rs (target/release/deps/tor_config-d4c4f29c45a0a3f9)`
    ///  * Disassemble it `objdump -d target/release/deps/tor_config-d4c4f29c45a0a3f9`
    ///  * Search for this function: `less +/'28flattenable_extract_fields_a.*:'`
    ///
    /// At the time of writing, the result is three instructions:
    /// load the address of the list, load a register with the constant 2 (the length),
    /// return.
    fn flattenable_extract_fields_a() -> FieldList {
        flattenable_extract_fields::<'_, A>()
    }

    #[test]
    fn flattenable_extract_fields_a_test() {
        // use std::hint::black_box
        let black_box = std::convert::identity; // replace with `use` when MSRV 1.66.0

        let f: fn() -> _ = black_box(flattenable_extract_fields_a);
        eprintln!("{:?}", f());
    }
}