pub type c_ulong = u64;
Expand description
Equivalent to C’s unsigned long
type.
This type will always be u32
or u64
. Most notably, many Linux-based systems assume an u64
, but Windows assumes u32
. The C standard technically only requires that this type be an unsigned integer with the size of a long
, although in practice, no system would have a ulong
that is neither a u32
nor u64
.
Implementations§
source§impl u64
impl u64
1.0.0 · sourcepub fn from_str_radix(src: &str, radix: u32) -> Result<u64, ParseIntError>
pub fn from_str_radix(src: &str, radix: u32) -> Result<u64, ParseIntError>
Converts a string slice in a given base to an integer.
The string is expected to be an optional +
sign
followed by digits.
Leading and trailing whitespace represent an error.
Digits are a subset of these characters, depending on radix
:
0-9
a-z
A-Z
Panics
This function panics if radix
is not in the range from 2 to 36.
Examples
Basic usage:
assert_eq!(u64::from_str_radix("A", 16), Ok(10));
Run1.0.0 (const: 1.32.0) · sourcepub const fn count_ones(self) -> u32
pub const fn count_ones(self) -> u32
1.0.0 (const: 1.32.0) · sourcepub const fn count_zeros(self) -> u32
pub const fn count_zeros(self) -> u32
1.0.0 (const: 1.32.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
Depending on what you’re doing with the value, you might also be interested in the
ilog2
function which returns a consistent number, even if the type widens.
Examples
Basic usage:
let n = u64::MAX >> 2;
assert_eq!(n.leading_zeros(), 2);
Run1.0.0 (const: 1.32.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
1.46.0 (const: 1.46.0) · sourcepub const fn leading_ones(self) -> u32
pub const fn leading_ones(self) -> u32
1.46.0 (const: 1.46.0) · sourcepub const fn trailing_ones(self) -> u32
pub const fn trailing_ones(self) -> u32
1.0.0 (const: 1.32.0) · sourcepub const fn rotate_left(self, n: u32) -> u64
pub const fn rotate_left(self, n: u32) -> u64
1.0.0 (const: 1.32.0) · sourcepub const fn rotate_right(self, n: u32) -> u64
pub const fn rotate_right(self, n: u32) -> u64
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting operator!
Examples
Basic usage:
let n = 0x6e10aau64;
let m = 0xaa00000000006e1;
assert_eq!(n.rotate_right(12), m);
Run1.0.0 (const: 1.32.0) · sourcepub const fn swap_bytes(self) -> u64
pub const fn swap_bytes(self) -> u64
1.37.0 (const: 1.37.0) · sourcepub const fn reverse_bits(self) -> u64
pub const fn reverse_bits(self) -> u64
Reverses the order of bits in the integer. The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.
Examples
Basic usage:
let n = 0x1234567890123456u64;
let m = n.reverse_bits();
assert_eq!(m, 0x6a2c48091e6a2c48);
assert_eq!(0, 0u64.reverse_bits());
Run1.0.0 (const: 1.32.0) · sourcepub const fn from_le(x: u64) -> u64
pub const fn from_le(x: u64) -> u64
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
let n = 0x1Au64;
if cfg!(target_endian = "little") {
assert_eq!(u64::from_le(n), n)
} else {
assert_eq!(u64::from_le(n), n.swap_bytes())
}
Run1.0.0 (const: 1.47.0) · sourcepub const fn checked_add(self, rhs: u64) -> Option<u64>
pub const fn checked_add(self, rhs: u64) -> Option<u64>
const: unstable · sourcepub unsafe fn unchecked_add(self, rhs: u64) -> u64
🔬This is a nightly-only experimental API. (unchecked_math
#85122)
pub unsafe fn unchecked_add(self, rhs: u64) -> u64
unchecked_math
#85122)Unchecked integer addition. Computes self + rhs
, assuming overflow
cannot occur.
Safety
This results in undefined behavior when
self + rhs > u64::MAX
or self + rhs < u64::MIN
,
i.e. when checked_add
would return None
.
1.66.0 (const: 1.66.0) · sourcepub const fn checked_add_signed(self, rhs: i64) -> Option<u64>
pub const fn checked_add_signed(self, rhs: i64) -> Option<u64>
1.0.0 (const: 1.47.0) · sourcepub const fn checked_sub(self, rhs: u64) -> Option<u64>
pub const fn checked_sub(self, rhs: u64) -> Option<u64>
const: unstable · sourcepub unsafe fn unchecked_sub(self, rhs: u64) -> u64
🔬This is a nightly-only experimental API. (unchecked_math
#85122)
pub unsafe fn unchecked_sub(self, rhs: u64) -> u64
unchecked_math
#85122)Unchecked integer subtraction. Computes self - rhs
, assuming overflow
cannot occur.
Safety
This results in undefined behavior when
self - rhs > u64::MAX
or self - rhs < u64::MIN
,
i.e. when checked_sub
would return None
.
1.0.0 (const: 1.47.0) · sourcepub const fn checked_mul(self, rhs: u64) -> Option<u64>
pub const fn checked_mul(self, rhs: u64) -> Option<u64>
const: unstable · sourcepub unsafe fn unchecked_mul(self, rhs: u64) -> u64
🔬This is a nightly-only experimental API. (unchecked_math
#85122)
pub unsafe fn unchecked_mul(self, rhs: u64) -> u64
unchecked_math
#85122)Unchecked integer multiplication. Computes self * rhs
, assuming overflow
cannot occur.
Safety
This results in undefined behavior when
self * rhs > u64::MAX
or self * rhs < u64::MIN
,
i.e. when checked_mul
would return None
.
1.0.0 (const: 1.52.0) · sourcepub const fn checked_div(self, rhs: u64) -> Option<u64>
pub const fn checked_div(self, rhs: u64) -> Option<u64>
1.38.0 (const: 1.52.0) · sourcepub const fn checked_div_euclid(self, rhs: u64) -> Option<u64>
pub const fn checked_div_euclid(self, rhs: u64) -> Option<u64>
1.7.0 (const: 1.52.0) · sourcepub const fn checked_rem(self, rhs: u64) -> Option<u64>
pub const fn checked_rem(self, rhs: u64) -> Option<u64>
1.38.0 (const: 1.52.0) · sourcepub const fn checked_rem_euclid(self, rhs: u64) -> Option<u64>
pub const fn checked_rem_euclid(self, rhs: u64) -> Option<u64>
1.67.0 (const: 1.67.0) · sourcepub const fn ilog(self, base: u64) -> u32
pub const fn ilog(self, base: u64) -> u32
Returns the logarithm of the number with respect to an arbitrary base, rounded down.
This method might not be optimized owing to implementation details;
ilog2
can produce results more efficiently for base 2, and ilog10
can produce results more efficiently for base 10.
Panics
This function will panic if self
is zero, or if base
is less than 2.
Examples
assert_eq!(5u64.ilog(5), 1);
Run1.67.0 (const: 1.67.0) · sourcepub const fn checked_ilog(self, base: u64) -> Option<u32>
pub const fn checked_ilog(self, base: u64) -> Option<u32>
Returns the logarithm of the number with respect to an arbitrary base, rounded down.
Returns None
if the number is zero, or if the base is not at least 2.
This method might not be optimized owing to implementation details;
checked_ilog2
can produce results more efficiently for base 2, and
checked_ilog10
can produce results more efficiently for base 10.
Examples
assert_eq!(5u64.checked_ilog(5), Some(1));
Run1.67.0 (const: 1.67.0) · sourcepub const fn checked_ilog2(self) -> Option<u32>
pub const fn checked_ilog2(self) -> Option<u32>
1.67.0 (const: 1.67.0) · sourcepub const fn checked_ilog10(self) -> Option<u32>
pub const fn checked_ilog10(self) -> Option<u32>
1.7.0 (const: 1.47.0) · sourcepub const fn checked_neg(self) -> Option<u64>
pub const fn checked_neg(self) -> Option<u64>
1.7.0 (const: 1.47.0) · sourcepub const fn checked_shl(self, rhs: u32) -> Option<u64>
pub const fn checked_shl(self, rhs: u32) -> Option<u64>
const: unstable · sourcepub unsafe fn unchecked_shl(self, rhs: u32) -> u64
🔬This is a nightly-only experimental API. (unchecked_math
#85122)
pub unsafe fn unchecked_shl(self, rhs: u32) -> u64
unchecked_math
#85122)Unchecked shift left. Computes self << rhs
, assuming that
rhs
is less than the number of bits in self
.
Safety
This results in undefined behavior if rhs
is larger than
or equal to the number of bits in self
,
i.e. when checked_shl
would return None
.
1.7.0 (const: 1.47.0) · sourcepub const fn checked_shr(self, rhs: u32) -> Option<u64>
pub const fn checked_shr(self, rhs: u32) -> Option<u64>
const: unstable · sourcepub unsafe fn unchecked_shr(self, rhs: u32) -> u64
🔬This is a nightly-only experimental API. (unchecked_math
#85122)
pub unsafe fn unchecked_shr(self, rhs: u32) -> u64
unchecked_math
#85122)Unchecked shift right. Computes self >> rhs
, assuming that
rhs
is less than the number of bits in self
.
Safety
This results in undefined behavior if rhs
is larger than
or equal to the number of bits in self
,
i.e. when checked_shr
would return None
.
1.34.0 (const: 1.50.0) · sourcepub const fn checked_pow(self, exp: u32) -> Option<u64>
pub const fn checked_pow(self, exp: u32) -> Option<u64>
1.0.0 (const: 1.47.0) · sourcepub const fn saturating_add(self, rhs: u64) -> u64
pub const fn saturating_add(self, rhs: u64) -> u64
1.66.0 (const: 1.66.0) · sourcepub const fn saturating_add_signed(self, rhs: i64) -> u64
pub const fn saturating_add_signed(self, rhs: i64) -> u64
Saturating addition with a signed integer. Computes self + rhs
,
saturating at the numeric bounds instead of overflowing.
Examples
Basic usage:
assert_eq!(1u64.saturating_add_signed(2), 3);
assert_eq!(1u64.saturating_add_signed(-2), 0);
assert_eq!((u64::MAX - 2).saturating_add_signed(4), u64::MAX);
Run1.0.0 (const: 1.47.0) · sourcepub const fn saturating_sub(self, rhs: u64) -> u64
pub const fn saturating_sub(self, rhs: u64) -> u64
1.7.0 (const: 1.47.0) · sourcepub const fn saturating_mul(self, rhs: u64) -> u64
pub const fn saturating_mul(self, rhs: u64) -> u64
1.58.0 (const: 1.58.0) · sourcepub const fn saturating_div(self, rhs: u64) -> u64
pub const fn saturating_div(self, rhs: u64) -> u64
1.34.0 (const: 1.50.0) · sourcepub const fn saturating_pow(self, exp: u32) -> u64
pub const fn saturating_pow(self, exp: u32) -> u64
1.0.0 (const: 1.32.0) · sourcepub const fn wrapping_add(self, rhs: u64) -> u64
pub const fn wrapping_add(self, rhs: u64) -> u64
1.66.0 (const: 1.66.0) · sourcepub const fn wrapping_add_signed(self, rhs: i64) -> u64
pub const fn wrapping_add_signed(self, rhs: i64) -> u64
1.0.0 (const: 1.32.0) · sourcepub const fn wrapping_sub(self, rhs: u64) -> u64
pub const fn wrapping_sub(self, rhs: u64) -> u64
1.0.0 (const: 1.32.0) · sourcepub const fn wrapping_mul(self, rhs: u64) -> u64
pub const fn wrapping_mul(self, rhs: u64) -> u64
Wrapping (modular) multiplication. Computes self * rhs
, wrapping around at the boundary of the type.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u8
is used here.
assert_eq!(10u8.wrapping_mul(12), 120);
assert_eq!(25u8.wrapping_mul(12), 44);
Run1.2.0 (const: 1.52.0) · sourcepub const fn wrapping_div(self, rhs: u64) -> u64
pub const fn wrapping_div(self, rhs: u64) -> u64
Wrapping (modular) division. Computes self / rhs
.
Wrapped division on unsigned types is just normal division.
There’s no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Examples
Basic usage:
assert_eq!(100u64.wrapping_div(10), 10);
Run1.38.0 (const: 1.52.0) · sourcepub const fn wrapping_div_euclid(self, rhs: u64) -> u64
pub const fn wrapping_div_euclid(self, rhs: u64) -> u64
Wrapping Euclidean division. Computes self.div_euclid(rhs)
.
Wrapped division on unsigned types is just normal division.
There’s no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.wrapping_div(rhs)
.
Examples
Basic usage:
assert_eq!(100u64.wrapping_div_euclid(10), 10);
Run1.2.0 (const: 1.52.0) · sourcepub const fn wrapping_rem(self, rhs: u64) -> u64
pub const fn wrapping_rem(self, rhs: u64) -> u64
Wrapping (modular) remainder. Computes self % rhs
.
Wrapped remainder calculation on unsigned types is
just the regular remainder calculation.
There’s no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Examples
Basic usage:
assert_eq!(100u64.wrapping_rem(10), 0);
Run1.38.0 (const: 1.52.0) · sourcepub const fn wrapping_rem_euclid(self, rhs: u64) -> u64
pub const fn wrapping_rem_euclid(self, rhs: u64) -> u64
Wrapping Euclidean modulo. Computes self.rem_euclid(rhs)
.
Wrapped modulo calculation on unsigned types is
just the regular remainder calculation.
There’s no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.wrapping_rem(rhs)
.
Examples
Basic usage:
assert_eq!(100u64.wrapping_rem_euclid(10), 0);
Run1.2.0 (const: 1.32.0) · sourcepub const fn wrapping_neg(self) -> u64
pub const fn wrapping_neg(self) -> u64
Wrapping (modular) negation. Computes -self
,
wrapping around at the boundary of the type.
Since unsigned types do not have negative equivalents
all applications of this function will wrap (except for -0
).
For values smaller than the corresponding signed type’s maximum
the result is the same as casting the corresponding signed value.
Any larger values are equivalent to MAX + 1 - (val - MAX - 1)
where
MAX
is the corresponding signed type’s maximum.
Examples
Basic usage:
assert_eq!(0_u64.wrapping_neg(), 0);
assert_eq!(u64::MAX.wrapping_neg(), 1);
assert_eq!(13_u64.wrapping_neg(), (!13) + 1);
assert_eq!(42_u64.wrapping_neg(), !(42 - 1));
Run1.2.0 (const: 1.32.0) · sourcepub const fn wrapping_shl(self, rhs: u32) -> u64
pub const fn wrapping_shl(self, rhs: u32) -> u64
Panic-free bitwise shift-left; yields self << mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the
RHS of a wrapping shift-left is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_left
function,
which may be what you want instead.
Examples
Basic usage:
assert_eq!(1u64.wrapping_shl(7), 128);
assert_eq!(1u64.wrapping_shl(128), 1);
Run1.2.0 (const: 1.32.0) · sourcepub const fn wrapping_shr(self, rhs: u32) -> u64
pub const fn wrapping_shr(self, rhs: u32) -> u64
Panic-free bitwise shift-right; yields self >> mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the
RHS of a wrapping shift-right is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_right
function,
which may be what you want instead.
Examples
Basic usage:
assert_eq!(128u64.wrapping_shr(7), 1);
assert_eq!(128u64.wrapping_shr(128), 128);
Run1.34.0 (const: 1.50.0) · sourcepub const fn wrapping_pow(self, exp: u32) -> u64
pub const fn wrapping_pow(self, exp: u32) -> u64
1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_add(self, rhs: u64) -> (u64, bool)
pub const fn overflowing_add(self, rhs: u64) -> (u64, bool)
Calculates self
+ rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
assert_eq!(5u64.overflowing_add(2), (7, false));
assert_eq!(u64::MAX.overflowing_add(1), (0, true));
Runconst: unstable · sourcepub fn carrying_add(self, rhs: u64, carry: bool) -> (u64, bool)
🔬This is a nightly-only experimental API. (bigint_helper_methods
#85532)
pub fn carrying_add(self, rhs: u64, carry: bool) -> (u64, bool)
bigint_helper_methods
#85532)Calculates self
+ rhs
+ carry
and returns a tuple containing
the sum and the output carry.
Performs “ternary addition” of two integer operands and a carry-in bit, and returns an output integer and a carry-out bit. This allows chaining together multiple additions to create a wider addition, and can be useful for bignum addition.
This can be thought of as a 64-bit “full adder”, in the electronics sense.
If the input carry is false, this method is equivalent to
overflowing_add
, and the output carry is
equal to the overflow flag. Note that although carry and overflow
flags are similar for unsigned integers, they are different for
signed integers.
Examples
#![feature(bigint_helper_methods)]
// 3 MAX (a = 3 × 2^64 + 2^64 - 1)
// + 5 7 (b = 5 × 2^64 + 7)
// ---------
// 9 6 (sum = 9 × 2^64 + 6)
let (a1, a0): (u64, u64) = (3, u64::MAX);
let (b1, b0): (u64, u64) = (5, 7);
let carry0 = false;
let (sum0, carry1) = a0.carrying_add(b0, carry0);
assert_eq!(carry1, true);
let (sum1, carry2) = a1.carrying_add(b1, carry1);
assert_eq!(carry2, false);
assert_eq!((sum1, sum0), (9, 6));
Run1.66.0 (const: 1.66.0) · sourcepub const fn overflowing_add_signed(self, rhs: i64) -> (u64, bool)
pub const fn overflowing_add_signed(self, rhs: i64) -> (u64, bool)
Calculates self
+ rhs
with a signed rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage:
assert_eq!(1u64.overflowing_add_signed(2), (3, false));
assert_eq!(1u64.overflowing_add_signed(-2), (u64::MAX, true));
assert_eq!((u64::MAX - 2).overflowing_add_signed(4), (1, true));
Run1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_sub(self, rhs: u64) -> (u64, bool)
pub const fn overflowing_sub(self, rhs: u64) -> (u64, bool)
Calculates self
- rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
assert_eq!(5u64.overflowing_sub(2), (3, false));
assert_eq!(0u64.overflowing_sub(1), (u64::MAX, true));
Runconst: unstable · sourcepub fn borrowing_sub(self, rhs: u64, borrow: bool) -> (u64, bool)
🔬This is a nightly-only experimental API. (bigint_helper_methods
#85532)
pub fn borrowing_sub(self, rhs: u64, borrow: bool) -> (u64, bool)
bigint_helper_methods
#85532)Calculates self
− rhs
− borrow
and returns a tuple
containing the difference and the output borrow.
Performs “ternary subtraction” by subtracting both an integer
operand and a borrow-in bit from self
, and returns an output
integer and a borrow-out bit. This allows chaining together multiple
subtractions to create a wider subtraction, and can be useful for
bignum subtraction.
Examples
#![feature(bigint_helper_methods)]
// 9 6 (a = 9 × 2^64 + 6)
// - 5 7 (b = 5 × 2^64 + 7)
// ---------
// 3 MAX (diff = 3 × 2^64 + 2^64 - 1)
let (a1, a0): (u64, u64) = (9, 6);
let (b1, b0): (u64, u64) = (5, 7);
let borrow0 = false;
let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
assert_eq!(borrow1, true);
let (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);
assert_eq!(borrow2, false);
assert_eq!((diff1, diff0), (3, u64::MAX));
Run1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_mul(self, rhs: u64) -> (u64, bool)
pub const fn overflowing_mul(self, rhs: u64) -> (u64, bool)
Calculates the multiplication of self
and rhs
.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u32
is used here.
assert_eq!(5u32.overflowing_mul(2), (10, false));
assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
Run1.7.0 (const: 1.52.0) · sourcepub const fn overflowing_div(self, rhs: u64) -> (u64, bool)
pub const fn overflowing_div(self, rhs: u64) -> (u64, bool)
Calculates the divisor when self
is divided by rhs
.
Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
false
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5u64.overflowing_div(2), (2, false));
Run1.38.0 (const: 1.52.0) · sourcepub const fn overflowing_div_euclid(self, rhs: u64) -> (u64, bool)
pub const fn overflowing_div_euclid(self, rhs: u64) -> (u64, bool)
Calculates the quotient of Euclidean division self.div_euclid(rhs)
.
Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
false
.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self.overflowing_div(rhs)
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5u64.overflowing_div_euclid(2), (2, false));
Run1.7.0 (const: 1.52.0) · sourcepub const fn overflowing_rem(self, rhs: u64) -> (u64, bool)
pub const fn overflowing_rem(self, rhs: u64) -> (u64, bool)
Calculates the remainder when self
is divided by rhs
.
Returns a tuple of the remainder after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always false
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5u64.overflowing_rem(2), (1, false));
Run1.38.0 (const: 1.52.0) · sourcepub const fn overflowing_rem_euclid(self, rhs: u64) -> (u64, bool)
pub const fn overflowing_rem_euclid(self, rhs: u64) -> (u64, bool)
Calculates the remainder self.rem_euclid(rhs)
as if by Euclidean division.
Returns a tuple of the modulo after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always false
.
Since, for the positive integers, all common
definitions of division are equal, this operation
is exactly equal to self.overflowing_rem(rhs)
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
assert_eq!(5u64.overflowing_rem_euclid(2), (1, false));
Run1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_neg(self) -> (u64, bool)
pub const fn overflowing_neg(self) -> (u64, bool)
Negates self in an overflowing fashion.
Returns !self + 1
using wrapping operations to return the value
that represents the negation of this unsigned value. Note that for
positive unsigned values overflow always occurs, but negating 0 does
not overflow.
Examples
Basic usage
assert_eq!(0u64.overflowing_neg(), (0, false));
assert_eq!(2u64.overflowing_neg(), (-2i32 as u64, true));
Run1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_shl(self, rhs: u32) -> (u64, bool)
pub const fn overflowing_shl(self, rhs: u32) -> (u64, bool)
Shifts self left by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
assert_eq!(0x1u64.overflowing_shl(4), (0x10, false));
assert_eq!(0x1u64.overflowing_shl(132), (0x10, true));
Run1.7.0 (const: 1.32.0) · sourcepub const fn overflowing_shr(self, rhs: u32) -> (u64, bool)
pub const fn overflowing_shr(self, rhs: u32) -> (u64, bool)
Shifts self right by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
assert_eq!(0x10u64.overflowing_shr(4), (0x1, false));
assert_eq!(0x10u64.overflowing_shr(132), (0x1, true));
Run1.34.0 (const: 1.50.0) · sourcepub const fn overflowing_pow(self, exp: u32) -> (u64, bool)
pub const fn overflowing_pow(self, exp: u32) -> (u64, bool)
1.38.0 (const: 1.52.0) · sourcepub const fn div_euclid(self, rhs: u64) -> u64
pub const fn div_euclid(self, rhs: u64) -> u64
1.38.0 (const: 1.52.0) · sourcepub const fn rem_euclid(self, rhs: u64) -> u64
pub const fn rem_euclid(self, rhs: u64) -> u64
Calculates the least remainder of self (mod rhs)
.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to self % rhs
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
assert_eq!(7u64.rem_euclid(4), 3); // or any other integer type
Runsourcepub const fn div_floor(self, rhs: u64) -> u64
🔬This is a nightly-only experimental API. (int_roundings
#88581)
pub const fn div_floor(self, rhs: u64) -> u64
int_roundings
#88581)1.73.0 (const: 1.73.0) · sourcepub const fn div_ceil(self, rhs: u64) -> u64
pub const fn div_ceil(self, rhs: u64) -> u64
Calculates the quotient of self
and rhs
, rounding the result towards positive infinity.
Panics
This function will panic if rhs
is zero.
Overflow behavior
On overflow, this function will panic if overflow checks are enabled (default in debug mode) and wrap if overflow checks are disabled (default in release mode).
Examples
Basic usage:
assert_eq!(7_u64.div_ceil(4), 2);
Run1.73.0 (const: 1.73.0) · sourcepub const fn next_multiple_of(self, rhs: u64) -> u64
pub const fn next_multiple_of(self, rhs: u64) -> u64
Calculates the smallest value greater than or equal to self
that
is a multiple of rhs
.
Panics
This function will panic if rhs
is zero.
Overflow behavior
On overflow, this function will panic if overflow checks are enabled (default in debug mode) and wrap if overflow checks are disabled (default in release mode).
Examples
Basic usage:
assert_eq!(16_u64.next_multiple_of(8), 16);
assert_eq!(23_u64.next_multiple_of(8), 24);
Run1.73.0 (const: 1.73.0) · sourcepub const fn checked_next_multiple_of(self, rhs: u64) -> Option<u64>
pub const fn checked_next_multiple_of(self, rhs: u64) -> Option<u64>
Calculates the smallest value greater than or equal to self
that
is a multiple of rhs
. Returns None
if rhs
is zero or the
operation would result in overflow.
Examples
Basic usage:
assert_eq!(16_u64.checked_next_multiple_of(8), Some(16));
assert_eq!(23_u64.checked_next_multiple_of(8), Some(24));
assert_eq!(1_u64.checked_next_multiple_of(0), None);
assert_eq!(u64::MAX.checked_next_multiple_of(2), None);
Run1.0.0 (const: 1.32.0) · sourcepub const fn is_power_of_two(self) -> bool
pub const fn is_power_of_two(self) -> bool
1.0.0 (const: 1.50.0) · sourcepub const fn next_power_of_two(self) -> u64
pub const fn next_power_of_two(self) -> u64
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type
uN
), it panics in debug mode and the return value is wrapped to 0 in
release mode (the only situation in which method can return 0).
Examples
Basic usage:
assert_eq!(2u64.next_power_of_two(), 2);
assert_eq!(3u64.next_power_of_two(), 4);
Run1.0.0 (const: 1.50.0) · sourcepub const fn checked_next_power_of_two(self) -> Option<u64>
pub const fn checked_next_power_of_two(self) -> Option<u64>
Returns the smallest power of two greater than or equal to n
. If
the next power of two is greater than the type’s maximum value,
None
is returned, otherwise the power of two is wrapped in Some
.
Examples
Basic usage:
assert_eq!(2u64.checked_next_power_of_two(), Some(2));
assert_eq!(3u64.checked_next_power_of_two(), Some(4));
assert_eq!(u64::MAX.checked_next_power_of_two(), None);
Runconst: unstable · sourcepub fn wrapping_next_power_of_two(self) -> u64
🔬This is a nightly-only experimental API. (wrapping_next_power_of_two
#32463)
pub fn wrapping_next_power_of_two(self) -> u64
wrapping_next_power_of_two
#32463)Returns the smallest power of two greater than or equal to n
. If
the next power of two is greater than the type’s maximum value,
the return value is wrapped to 0
.
Examples
Basic usage:
#![feature(wrapping_next_power_of_two)]
assert_eq!(2u64.wrapping_next_power_of_two(), 2);
assert_eq!(3u64.wrapping_next_power_of_two(), 4);
assert_eq!(u64::MAX.wrapping_next_power_of_two(), 0);
Run1.32.0 (const: 1.44.0) · sourcepub const fn to_be_bytes(self) -> [u8; 8]
pub const fn to_be_bytes(self) -> [u8; 8]
1.32.0 (const: 1.44.0) · sourcepub const fn to_le_bytes(self) -> [u8; 8]
pub const fn to_le_bytes(self) -> [u8; 8]
1.32.0 (const: 1.44.0) · sourcepub const fn to_ne_bytes(self) -> [u8; 8]
pub const fn to_ne_bytes(self) -> [u8; 8]
Return the memory representation of this integer as a byte array in native byte order.
As the target platform’s native endianness is used, portable code
should use to_be_bytes
or to_le_bytes
, as appropriate,
instead.
Examples
let bytes = 0x1234567890123456u64.to_ne_bytes();
assert_eq!(
bytes,
if cfg!(target_endian = "big") {
[0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]
} else {
[0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]
}
);
Run1.32.0 (const: 1.44.0) · sourcepub const fn from_be_bytes(bytes: [u8; 8]) -> u64
pub const fn from_be_bytes(bytes: [u8; 8]) -> u64
Create a native endian integer value from its representation as a byte array in big endian.
Examples
let value = u64::from_be_bytes([0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]);
assert_eq!(value, 0x1234567890123456);
RunWhen starting from a slice rather than an array, fallible conversion APIs can be used:
fn read_be_u64(input: &mut &[u8]) -> u64 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<u64>());
*input = rest;
u64::from_be_bytes(int_bytes.try_into().unwrap())
}
Run1.32.0 (const: 1.44.0) · sourcepub const fn from_le_bytes(bytes: [u8; 8]) -> u64
pub const fn from_le_bytes(bytes: [u8; 8]) -> u64
Create a native endian integer value from its representation as a byte array in little endian.
Examples
let value = u64::from_le_bytes([0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]);
assert_eq!(value, 0x1234567890123456);
RunWhen starting from a slice rather than an array, fallible conversion APIs can be used:
fn read_le_u64(input: &mut &[u8]) -> u64 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<u64>());
*input = rest;
u64::from_le_bytes(int_bytes.try_into().unwrap())
}
Run1.32.0 (const: 1.44.0) · sourcepub const fn from_ne_bytes(bytes: [u8; 8]) -> u64
pub const fn from_ne_bytes(bytes: [u8; 8]) -> u64
Create a native endian integer value from its memory representation as a byte array in native endianness.
As the target platform’s native endianness is used, portable code
likely wants to use from_be_bytes
or from_le_bytes
, as
appropriate instead.
Examples
let value = u64::from_ne_bytes(if cfg!(target_endian = "big") {
[0x12, 0x34, 0x56, 0x78, 0x90, 0x12, 0x34, 0x56]
} else {
[0x56, 0x34, 0x12, 0x90, 0x78, 0x56, 0x34, 0x12]
});
assert_eq!(value, 0x1234567890123456);
RunWhen starting from a slice rather than an array, fallible conversion APIs can be used:
fn read_ne_u64(input: &mut &[u8]) -> u64 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<u64>());
*input = rest;
u64::from_ne_bytes(int_bytes.try_into().unwrap())
}
Run1.0.0 (const: 1.32.0) · sourcepub const fn min_value() -> u64
👎Deprecating in a future Rust version: replaced by the MIN
associated constant on this type
pub const fn min_value() -> u64
MIN
associated constant on this typeNew code should prefer to use
u64::MIN
instead.
Returns the smallest value that can be represented by this integer type.
1.0.0 (const: 1.32.0) · sourcepub const fn max_value() -> u64
👎Deprecating in a future Rust version: replaced by the MAX
associated constant on this type
pub const fn max_value() -> u64
MAX
associated constant on this typeNew code should prefer to use
u64::MAX
instead.
Returns the largest value that can be represented by this integer type.
const: unstable · sourcepub fn widening_mul(self, rhs: u64) -> (u64, u64)
🔬This is a nightly-only experimental API. (bigint_helper_methods
#85532)
pub fn widening_mul(self, rhs: u64) -> (u64, u64)
bigint_helper_methods
#85532)Calculates the complete product self * rhs
without the possibility to overflow.
This returns the low-order (wrapping) bits and the high-order (overflow) bits of the result as two separate values, in that order.
If you also need to add a carry to the wide result, then you want
Self::carrying_mul
instead.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u32
is used here.
#![feature(bigint_helper_methods)]
assert_eq!(5u32.widening_mul(2), (10, 0));
assert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
Runconst: unstable · sourcepub fn carrying_mul(self, rhs: u64, carry: u64) -> (u64, u64)
🔬This is a nightly-only experimental API. (bigint_helper_methods
#85532)
pub fn carrying_mul(self, rhs: u64, carry: u64) -> (u64, u64)
bigint_helper_methods
#85532)Calculates the “full multiplication” self * rhs + carry
without the possibility to overflow.
This returns the low-order (wrapping) bits and the high-order (overflow) bits of the result as two separate values, in that order.
Performs “long multiplication” which takes in an extra amount to add, and may return an additional amount of overflow. This allows for chaining together multiple multiplications to create “big integers” which represent larger values.
If you don’t need the carry
, then you can use Self::widening_mul
instead.
Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u32
is used here.
#![feature(bigint_helper_methods)]
assert_eq!(5u32.carrying_mul(2, 0), (10, 0));
assert_eq!(5u32.carrying_mul(2, 10), (20, 0));
assert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));
assert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));
assert_eq!(u64::MAX.carrying_mul(u64::MAX, u64::MAX), (0, u64::MAX));
RunThis is the core operation needed for scalar multiplication when implementing it for wider-than-native types.
#![feature(bigint_helper_methods)]
fn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {
let mut carry = 0;
for d in little_endian_digits.iter_mut() {
(*d, carry) = d.carrying_mul(multiplicand, carry);
}
if carry != 0 {
little_endian_digits.push(carry);
}
}
let mut v = vec![10, 20];
scalar_mul_eq(&mut v, 3);
assert_eq!(v, [30, 60]);
assert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);
let mut v = vec![0x4321, 0x8765];
scalar_mul_eq(&mut v, 0xFEED);
assert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
RunIf carry
is zero, this is similar to overflowing_mul
,
except that it gives the value of the overflow instead of just whether one happened:
#![feature(bigint_helper_methods)]
let r = u8::carrying_mul(7, 13, 0);
assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));
let r = u8::carrying_mul(13, 42, 0);
assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
RunThe value of the first field in the returned tuple matches what you’d get
by combining the wrapping_mul
and
wrapping_add
methods:
#![feature(bigint_helper_methods)]
assert_eq!(
789_u16.carrying_mul(456, 123).0,
789_u16.wrapping_mul(456).wrapping_add(123),
);
Runconst: unstable · sourcepub fn midpoint(self, rhs: u64) -> u64
🔬This is a nightly-only experimental API. (num_midpoint
#110840)
pub fn midpoint(self, rhs: u64) -> u64
num_midpoint
#110840)Calculates the middle point of self
and rhs
.
midpoint(a, b)
is (a + b) >> 1
as if it were performed in a
sufficiently-large signed integral type. This implies that the result is
always rounded towards negative infinity and that no overflow will ever occur.
Examples
#![feature(num_midpoint)]
assert_eq!(0u64.midpoint(4), 2);
assert_eq!(1u64.midpoint(4), 2);
RunTrait Implementations§
1.22.0 · source§impl AddAssign<&u64> for u64
impl AddAssign<&u64> for u64
source§fn add_assign(&mut self, other: &u64)
fn add_assign(&mut self, other: &u64)
+=
operation. Read more1.8.0 · source§impl AddAssign<u64> for u64
impl AddAssign<u64> for u64
source§fn add_assign(&mut self, other: u64)
fn add_assign(&mut self, other: u64)
+=
operation. Read more1.22.0 · source§impl BitAndAssign<&u64> for u64
impl BitAndAssign<&u64> for u64
source§fn bitand_assign(&mut self, other: &u64)
fn bitand_assign(&mut self, other: &u64)
&=
operation. Read more1.8.0 · source§impl BitAndAssign<u64> for u64
impl BitAndAssign<u64> for u64
source§fn bitand_assign(&mut self, other: u64)
fn bitand_assign(&mut self, other: u64)
&=
operation. Read more1.45.0 · source§impl BitOr<NonZeroU64> for u64
impl BitOr<NonZeroU64> for u64
§type Output = NonZeroU64
type Output = NonZeroU64
|
operator.source§fn bitor(self, rhs: NonZeroU64) -> <u64 as BitOr<NonZeroU64>>::Output
fn bitor(self, rhs: NonZeroU64) -> <u64 as BitOr<NonZeroU64>>::Output
|
operation. Read more1.22.0 · source§impl BitOrAssign<&u64> for u64
impl BitOrAssign<&u64> for u64
source§fn bitor_assign(&mut self, other: &u64)
fn bitor_assign(&mut self, other: &u64)
|=
operation. Read more1.8.0 · source§impl BitOrAssign<u64> for u64
impl BitOrAssign<u64> for u64
source§fn bitor_assign(&mut self, other: u64)
fn bitor_assign(&mut self, other: u64)
|=
operation. Read more1.22.0 · source§impl BitXorAssign<&u64> for u64
impl BitXorAssign<&u64> for u64
source§fn bitxor_assign(&mut self, other: &u64)
fn bitxor_assign(&mut self, other: &u64)
^=
operation. Read more1.8.0 · source§impl BitXorAssign<u64> for u64
impl BitXorAssign<u64> for u64
source§fn bitxor_assign(&mut self, other: u64)
fn bitxor_assign(&mut self, other: u64)
^=
operation. Read more1.51.0 · source§impl Div<NonZeroU64> for u64
impl Div<NonZeroU64> for u64
1.0.0 · source§impl Div<u64> for u64
impl Div<u64> for u64
This operation rounds towards zero, truncating any fractional part of the exact result.
Panics
This operation will panic if other == 0
.
1.22.0 · source§impl DivAssign<&u64> for u64
impl DivAssign<&u64> for u64
source§fn div_assign(&mut self, other: &u64)
fn div_assign(&mut self, other: &u64)
/=
operation. Read more1.8.0 · source§impl DivAssign<u64> for u64
impl DivAssign<u64> for u64
source§fn div_assign(&mut self, other: u64)
fn div_assign(&mut self, other: u64)
/=
operation. Read more1.31.0 · source§impl From<NonZeroU64> for u64
impl From<NonZeroU64> for u64
source§fn from(nonzero: NonZeroU64) -> u64
fn from(nonzero: NonZeroU64) -> u64
Converts a NonZeroU64
into an u64
1.22.0 · source§impl MulAssign<&u64> for u64
impl MulAssign<&u64> for u64
source§fn mul_assign(&mut self, other: &u64)
fn mul_assign(&mut self, other: &u64)
*=
operation. Read more1.8.0 · source§impl MulAssign<u64> for u64
impl MulAssign<u64> for u64
source§fn mul_assign(&mut self, other: u64)
fn mul_assign(&mut self, other: u64)
*=
operation. Read more1.0.0 · source§impl Ord for u64
impl Ord for u64
1.0.0 · source§impl PartialOrd<u64> for u64
impl PartialOrd<u64> for u64
source§fn le(&self, other: &u64) -> bool
fn le(&self, other: &u64) -> bool
self
and other
) and is used by the <=
operator. Read more1.51.0 · source§impl Rem<NonZeroU64> for u64
impl Rem<NonZeroU64> for u64
1.0.0 · source§impl Rem<u64> for u64
impl Rem<u64> for u64
This operation satisfies n % d == n - (n / d) * d
. The
result has the same sign as the left operand.
Panics
This operation will panic if other == 0
.
1.22.0 · source§impl RemAssign<&u64> for u64
impl RemAssign<&u64> for u64
source§fn rem_assign(&mut self, other: &u64)
fn rem_assign(&mut self, other: &u64)
%=
operation. Read more1.8.0 · source§impl RemAssign<u64> for u64
impl RemAssign<u64> for u64
source§fn rem_assign(&mut self, other: u64)
fn rem_assign(&mut self, other: u64)
%=
operation. Read more1.22.0 · source§impl ShlAssign<&i128> for u64
impl ShlAssign<&i128> for u64
source§fn shl_assign(&mut self, other: &i128)
fn shl_assign(&mut self, other: &i128)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&i16> for u64
impl ShlAssign<&i16> for u64
source§fn shl_assign(&mut self, other: &i16)
fn shl_assign(&mut self, other: &i16)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&i32> for u64
impl ShlAssign<&i32> for u64
source§fn shl_assign(&mut self, other: &i32)
fn shl_assign(&mut self, other: &i32)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&i64> for u64
impl ShlAssign<&i64> for u64
source§fn shl_assign(&mut self, other: &i64)
fn shl_assign(&mut self, other: &i64)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&i8> for u64
impl ShlAssign<&i8> for u64
source§fn shl_assign(&mut self, other: &i8)
fn shl_assign(&mut self, other: &i8)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&isize> for u64
impl ShlAssign<&isize> for u64
source§fn shl_assign(&mut self, other: &isize)
fn shl_assign(&mut self, other: &isize)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&u128> for u64
impl ShlAssign<&u128> for u64
source§fn shl_assign(&mut self, other: &u128)
fn shl_assign(&mut self, other: &u128)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&u16> for u64
impl ShlAssign<&u16> for u64
source§fn shl_assign(&mut self, other: &u16)
fn shl_assign(&mut self, other: &u16)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&u32> for u64
impl ShlAssign<&u32> for u64
source§fn shl_assign(&mut self, other: &u32)
fn shl_assign(&mut self, other: &u32)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&u64> for u64
impl ShlAssign<&u64> for u64
source§fn shl_assign(&mut self, other: &u64)
fn shl_assign(&mut self, other: &u64)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&u8> for u64
impl ShlAssign<&u8> for u64
source§fn shl_assign(&mut self, other: &u8)
fn shl_assign(&mut self, other: &u8)
<<=
operation. Read more1.22.0 · source§impl ShlAssign<&usize> for u64
impl ShlAssign<&usize> for u64
source§fn shl_assign(&mut self, other: &usize)
fn shl_assign(&mut self, other: &usize)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<i128> for u64
impl ShlAssign<i128> for u64
source§fn shl_assign(&mut self, other: i128)
fn shl_assign(&mut self, other: i128)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<i16> for u64
impl ShlAssign<i16> for u64
source§fn shl_assign(&mut self, other: i16)
fn shl_assign(&mut self, other: i16)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<i32> for u64
impl ShlAssign<i32> for u64
source§fn shl_assign(&mut self, other: i32)
fn shl_assign(&mut self, other: i32)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<i64> for u64
impl ShlAssign<i64> for u64
source§fn shl_assign(&mut self, other: i64)
fn shl_assign(&mut self, other: i64)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<i8> for u64
impl ShlAssign<i8> for u64
source§fn shl_assign(&mut self, other: i8)
fn shl_assign(&mut self, other: i8)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<isize> for u64
impl ShlAssign<isize> for u64
source§fn shl_assign(&mut self, other: isize)
fn shl_assign(&mut self, other: isize)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<u128> for u64
impl ShlAssign<u128> for u64
source§fn shl_assign(&mut self, other: u128)
fn shl_assign(&mut self, other: u128)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<u16> for u64
impl ShlAssign<u16> for u64
source§fn shl_assign(&mut self, other: u16)
fn shl_assign(&mut self, other: u16)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<u32> for u64
impl ShlAssign<u32> for u64
source§fn shl_assign(&mut self, other: u32)
fn shl_assign(&mut self, other: u32)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<u64> for u64
impl ShlAssign<u64> for u64
source§fn shl_assign(&mut self, other: u64)
fn shl_assign(&mut self, other: u64)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<u8> for u64
impl ShlAssign<u8> for u64
source§fn shl_assign(&mut self, other: u8)
fn shl_assign(&mut self, other: u8)
<<=
operation. Read more1.8.0 · source§impl ShlAssign<usize> for u64
impl ShlAssign<usize> for u64
source§fn shl_assign(&mut self, other: usize)
fn shl_assign(&mut self, other: usize)
<<=
operation. Read more1.22.0 · source§impl ShrAssign<&i128> for u64
impl ShrAssign<&i128> for u64
source§fn shr_assign(&mut self, other: &i128)
fn shr_assign(&mut self, other: &i128)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&i16> for u64
impl ShrAssign<&i16> for u64
source§fn shr_assign(&mut self, other: &i16)
fn shr_assign(&mut self, other: &i16)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&i32> for u64
impl ShrAssign<&i32> for u64
source§fn shr_assign(&mut self, other: &i32)
fn shr_assign(&mut self, other: &i32)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&i64> for u64
impl ShrAssign<&i64> for u64
source§fn shr_assign(&mut self, other: &i64)
fn shr_assign(&mut self, other: &i64)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&i8> for u64
impl ShrAssign<&i8> for u64
source§fn shr_assign(&mut self, other: &i8)
fn shr_assign(&mut self, other: &i8)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&isize> for u64
impl ShrAssign<&isize> for u64
source§fn shr_assign(&mut self, other: &isize)
fn shr_assign(&mut self, other: &isize)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&u128> for u64
impl ShrAssign<&u128> for u64
source§fn shr_assign(&mut self, other: &u128)
fn shr_assign(&mut self, other: &u128)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&u16> for u64
impl ShrAssign<&u16> for u64
source§fn shr_assign(&mut self, other: &u16)
fn shr_assign(&mut self, other: &u16)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&u32> for u64
impl ShrAssign<&u32> for u64
source§fn shr_assign(&mut self, other: &u32)
fn shr_assign(&mut self, other: &u32)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&u64> for u64
impl ShrAssign<&u64> for u64
source§fn shr_assign(&mut self, other: &u64)
fn shr_assign(&mut self, other: &u64)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&u8> for u64
impl ShrAssign<&u8> for u64
source§fn shr_assign(&mut self, other: &u8)
fn shr_assign(&mut self, other: &u8)
>>=
operation. Read more1.22.0 · source§impl ShrAssign<&usize> for u64
impl ShrAssign<&usize> for u64
source§fn shr_assign(&mut self, other: &usize)
fn shr_assign(&mut self, other: &usize)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<i128> for u64
impl ShrAssign<i128> for u64
source§fn shr_assign(&mut self, other: i128)
fn shr_assign(&mut self, other: i128)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<i16> for u64
impl ShrAssign<i16> for u64
source§fn shr_assign(&mut self, other: i16)
fn shr_assign(&mut self, other: i16)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<i32> for u64
impl ShrAssign<i32> for u64
source§fn shr_assign(&mut self, other: i32)
fn shr_assign(&mut self, other: i32)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<i64> for u64
impl ShrAssign<i64> for u64
source§fn shr_assign(&mut self, other: i64)
fn shr_assign(&mut self, other: i64)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<i8> for u64
impl ShrAssign<i8> for u64
source§fn shr_assign(&mut self, other: i8)
fn shr_assign(&mut self, other: i8)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<isize> for u64
impl ShrAssign<isize> for u64
source§fn shr_assign(&mut self, other: isize)
fn shr_assign(&mut self, other: isize)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<u128> for u64
impl ShrAssign<u128> for u64
source§fn shr_assign(&mut self, other: u128)
fn shr_assign(&mut self, other: u128)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<u16> for u64
impl ShrAssign<u16> for u64
source§fn shr_assign(&mut self, other: u16)
fn shr_assign(&mut self, other: u16)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<u32> for u64
impl ShrAssign<u32> for u64
source§fn shr_assign(&mut self, other: u32)
fn shr_assign(&mut self, other: u32)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<u64> for u64
impl ShrAssign<u64> for u64
source§fn shr_assign(&mut self, other: u64)
fn shr_assign(&mut self, other: u64)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<u8> for u64
impl ShrAssign<u8> for u64
source§fn shr_assign(&mut self, other: u8)
fn shr_assign(&mut self, other: u8)
>>=
operation. Read more1.8.0 · source§impl ShrAssign<usize> for u64
impl ShrAssign<usize> for u64
source§fn shr_assign(&mut self, other: usize)
fn shr_assign(&mut self, other: usize)
>>=
operation. Read moresource§impl SimdElement for u64
impl SimdElement for u64
source§impl Step for u64
impl Step for u64
source§unsafe fn forward_unchecked(start: u64, n: usize) -> u64
unsafe fn forward_unchecked(start: u64, n: usize) -> u64
step_trait
#42168)source§unsafe fn backward_unchecked(start: u64, n: usize) -> u64
unsafe fn backward_unchecked(start: u64, n: usize) -> u64
step_trait
#42168)source§fn forward(start: u64, n: usize) -> u64
fn forward(start: u64, n: usize) -> u64
step_trait
#42168)source§fn backward(start: u64, n: usize) -> u64
fn backward(start: u64, n: usize) -> u64
step_trait
#42168)source§fn steps_between(start: &u64, end: &u64) -> Option<usize>
fn steps_between(start: &u64, end: &u64) -> Option<usize>
step_trait
#42168)1.22.0 · source§impl SubAssign<&u64> for u64
impl SubAssign<&u64> for u64
source§fn sub_assign(&mut self, other: &u64)
fn sub_assign(&mut self, other: &u64)
-=
operation. Read more1.8.0 · source§impl SubAssign<u64> for u64
impl SubAssign<u64> for u64
source§fn sub_assign(&mut self, other: u64)
fn sub_assign(&mut self, other: u64)
-=
operation. Read more1.34.0 · source§impl TryFrom<i128> for u64
impl TryFrom<i128> for u64
source§fn try_from(u: i128) -> Result<u64, <u64 as TryFrom<i128>>::Error>
fn try_from(u: i128) -> Result<u64, <u64 as TryFrom<i128>>::Error>
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
§type Error = TryFromIntError
type Error = TryFromIntError
1.34.0 · source§impl TryFrom<i16> for u64
impl TryFrom<i16> for u64
source§fn try_from(u: i16) -> Result<u64, <u64 as TryFrom<i16>>::Error>
fn try_from(u: i16) -> Result<u64, <u64 as TryFrom<i16>>::Error>
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
§type Error = TryFromIntError
type Error = TryFromIntError
1.34.0 · source§impl TryFrom<i32> for u64
impl TryFrom<i32> for u64
source§fn try_from(u: i32) -> Result<u64, <u64 as TryFrom<i32>>::Error>
fn try_from(u: i32) -> Result<u64, <u64 as TryFrom<i32>>::Error>
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
§type Error = TryFromIntError
type Error = TryFromIntError
1.34.0 · source§impl TryFrom<i64> for u64
impl TryFrom<i64> for u64
source§fn try_from(u: i64) -> Result<u64, <u64 as TryFrom<i64>>::Error>
fn try_from(u: i64) -> Result<u64, <u64 as TryFrom<i64>>::Error>
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
§type Error = TryFromIntError
type Error = TryFromIntError
1.34.0 · source§impl TryFrom<i8> for u64
impl TryFrom<i8> for u64
source§fn try_from(u: i8) -> Result<u64, <u64 as TryFrom<i8>>::Error>
fn try_from(u: i8) -> Result<u64, <u64 as TryFrom<i8>>::Error>
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
§type Error = TryFromIntError
type Error = TryFromIntError
1.34.0 · source§impl TryFrom<isize> for u64
impl TryFrom<isize> for u64
source§fn try_from(u: isize) -> Result<u64, <u64 as TryFrom<isize>>::Error>
fn try_from(u: isize) -> Result<u64, <u64 as TryFrom<isize>>::Error>
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
§type Error = TryFromIntError
type Error = TryFromIntError
1.34.0 · source§impl TryFrom<u128> for u64
impl TryFrom<u128> for u64
source§fn try_from(u: u128) -> Result<u64, <u64 as TryFrom<u128>>::Error>
fn try_from(u: u128) -> Result<u64, <u64 as TryFrom<u128>>::Error>
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.
§type Error = TryFromIntError
type Error = TryFromIntError
1.34.0 · source§impl TryFrom<usize> for u64
impl TryFrom<usize> for u64
source§fn try_from(value: usize) -> Result<u64, <u64 as TryFrom<usize>>::Error>
fn try_from(value: usize) -> Result<u64, <u64 as TryFrom<usize>>::Error>
Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.