1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;
use crate::cell::UnsafeCell;
use crate::fmt;
use crate::ops::Deref;
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::sync::atomic::{AtomicUsize, Ordering::Relaxed};
use crate::sys::sync as sys;
/// A re-entrant mutual exclusion lock
///
/// This lock will block *other* threads waiting for the lock to become
/// available. The thread which has already locked the mutex can lock it
/// multiple times without blocking, preventing a common source of deadlocks.
///
/// # Examples
///
/// Allow recursively calling a function needing synchronization from within
/// a callback (this is how [`StdoutLock`](crate::io::StdoutLock) is currently
/// implemented):
///
/// ```
/// #![feature(reentrant_lock)]
///
/// use std::cell::RefCell;
/// use std::sync::ReentrantLock;
///
/// pub struct Log {
/// data: RefCell<String>,
/// }
///
/// impl Log {
/// pub fn append(&self, msg: &str) {
/// self.data.borrow_mut().push_str(msg);
/// }
/// }
///
/// static LOG: ReentrantLock<Log> = ReentrantLock::new(Log { data: RefCell::new(String::new()) });
///
/// pub fn with_log<R>(f: impl FnOnce(&Log) -> R) -> R {
/// let log = LOG.lock();
/// f(&*log)
/// }
///
/// with_log(|log| {
/// log.append("Hello");
/// with_log(|log| log.append(" there!"));
/// });
/// ```
///
// # Implementation details
//
// The 'owner' field tracks which thread has locked the mutex.
//
// We use current_thread_unique_ptr() as the thread identifier,
// which is just the address of a thread local variable.
//
// If `owner` is set to the identifier of the current thread,
// we assume the mutex is already locked and instead of locking it again,
// we increment `lock_count`.
//
// When unlocking, we decrement `lock_count`, and only unlock the mutex when
// it reaches zero.
//
// `lock_count` is protected by the mutex and only accessed by the thread that has
// locked the mutex, so needs no synchronization.
//
// `owner` can be checked by other threads that want to see if they already
// hold the lock, so needs to be atomic. If it compares equal, we're on the
// same thread that holds the mutex and memory access can use relaxed ordering
// since we're not dealing with multiple threads. If it's not equal,
// synchronization is left to the mutex, making relaxed memory ordering for
// the `owner` field fine in all cases.
#[unstable(feature = "reentrant_lock", issue = "121440")]
pub struct ReentrantLock<T: ?Sized> {
mutex: sys::Mutex,
owner: AtomicUsize,
lock_count: UnsafeCell<u32>,
data: T,
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: Send + ?Sized> Send for ReentrantLock<T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: Send + ?Sized> Sync for ReentrantLock<T> {}
// Because of the `UnsafeCell`, these traits are not implemented automatically
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: UnwindSafe + ?Sized> UnwindSafe for ReentrantLock<T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: RefUnwindSafe + ?Sized> RefUnwindSafe for ReentrantLock<T> {}
/// An RAII implementation of a "scoped lock" of a re-entrant lock. When this
/// structure is dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] implementation.
///
/// This structure is created by the [`lock`](ReentrantLock::lock) method on
/// [`ReentrantLock`].
///
/// # Mutability
///
/// Unlike [`MutexGuard`](super::MutexGuard), `ReentrantLockGuard` does not
/// implement [`DerefMut`](crate::ops::DerefMut), because implementation of
/// the trait would violate Rust’s reference aliasing rules. Use interior
/// mutability (usually [`RefCell`](crate::cell::RefCell)) in order to mutate
/// the guarded data.
#[must_use = "if unused the ReentrantLock will immediately unlock"]
#[unstable(feature = "reentrant_lock", issue = "121440")]
pub struct ReentrantLockGuard<'a, T: ?Sized + 'a> {
lock: &'a ReentrantLock<T>,
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> !Send for ReentrantLockGuard<'_, T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T> ReentrantLock<T> {
/// Creates a new re-entrant lock in an unlocked state ready for use.
///
/// # Examples
///
/// ```
/// #![feature(reentrant_lock)]
/// use std::sync::ReentrantLock;
///
/// let lock = ReentrantLock::new(0);
/// ```
pub const fn new(t: T) -> ReentrantLock<T> {
ReentrantLock {
mutex: sys::Mutex::new(),
owner: AtomicUsize::new(0),
lock_count: UnsafeCell::new(0),
data: t,
}
}
/// Consumes this lock, returning the underlying data.
///
/// # Examples
///
/// ```
/// #![feature(reentrant_lock)]
///
/// use std::sync::ReentrantLock;
///
/// let lock = ReentrantLock::new(0);
/// assert_eq!(lock.into_inner(), 0);
/// ```
pub fn into_inner(self) -> T {
self.data
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> ReentrantLock<T> {
/// Acquires the lock, blocking the current thread until it is able to do
/// so.
///
/// This function will block the caller until it is available to acquire
/// the lock. Upon returning, the thread is the only thread with the lock
/// held. When the thread calling this method already holds the lock, the
/// call succeeds without blocking.
///
/// # Examples
///
/// ```
/// #![feature(reentrant_lock)]
/// use std::cell::Cell;
/// use std::sync::{Arc, ReentrantLock};
/// use std::thread;
///
/// let lock = Arc::new(ReentrantLock::new(Cell::new(0)));
/// let c_lock = Arc::clone(&lock);
///
/// thread::spawn(move || {
/// c_lock.lock().set(10);
/// }).join().expect("thread::spawn failed");
/// assert_eq!(lock.lock().get(), 10);
/// ```
pub fn lock(&self) -> ReentrantLockGuard<'_, T> {
let this_thread = current_thread_unique_ptr();
// Safety: We only touch lock_count when we own the lock.
unsafe {
if self.owner.load(Relaxed) == this_thread {
self.increment_lock_count().expect("lock count overflow in reentrant mutex");
} else {
self.mutex.lock();
self.owner.store(this_thread, Relaxed);
debug_assert_eq!(*self.lock_count.get(), 0);
*self.lock_count.get() = 1;
}
}
ReentrantLockGuard { lock: self }
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `ReentrantLock` mutably, no actual locking
/// needs to take place -- the mutable borrow statically guarantees no locks
/// exist.
///
/// # Examples
///
/// ```
/// #![feature(reentrant_lock)]
/// use std::sync::ReentrantLock;
///
/// let mut lock = ReentrantLock::new(0);
/// *lock.get_mut() = 10;
/// assert_eq!(*lock.lock(), 10);
/// ```
pub fn get_mut(&mut self) -> &mut T {
&mut self.data
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then `None` is returned.
/// Otherwise, an RAII guard is returned.
///
/// This function does not block.
pub(crate) fn try_lock(&self) -> Option<ReentrantLockGuard<'_, T>> {
let this_thread = current_thread_unique_ptr();
// Safety: We only touch lock_count when we own the lock.
unsafe {
if self.owner.load(Relaxed) == this_thread {
self.increment_lock_count()?;
Some(ReentrantLockGuard { lock: self })
} else if self.mutex.try_lock() {
self.owner.store(this_thread, Relaxed);
debug_assert_eq!(*self.lock_count.get(), 0);
*self.lock_count.get() = 1;
Some(ReentrantLockGuard { lock: self })
} else {
None
}
}
}
unsafe fn increment_lock_count(&self) -> Option<()> {
*self.lock_count.get() = (*self.lock_count.get()).checked_add(1)?;
Some(())
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLock<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut d = f.debug_struct("ReentrantLock");
match self.try_lock() {
Some(v) => d.field("data", &&*v),
None => d.field("data", &format_args!("<locked>")),
};
d.finish_non_exhaustive()
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: Default> Default for ReentrantLock<T> {
fn default() -> Self {
Self::new(T::default())
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T> From<T> for ReentrantLock<T> {
fn from(t: T) -> Self {
Self::new(t)
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> Deref for ReentrantLockGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
&self.lock.data
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLockGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Display + ?Sized> fmt::Display for ReentrantLockGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> Drop for ReentrantLockGuard<'_, T> {
#[inline]
fn drop(&mut self) {
// Safety: We own the lock.
unsafe {
*self.lock.lock_count.get() -= 1;
if *self.lock.lock_count.get() == 0 {
self.lock.owner.store(0, Relaxed);
self.lock.mutex.unlock();
}
}
}
}
/// Get an address that is unique per running thread.
///
/// This can be used as a non-null usize-sized ID.
pub(crate) fn current_thread_unique_ptr() -> usize {
// Use a non-drop type to make sure it's still available during thread destruction.
thread_local! { static X: u8 = const { 0 } }
X.with(|x| <*const _>::addr(x))
}