1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
use crate::iter::{FusedIterator, TrustedLen};
use crate::mem::ManuallyDrop;
use crate::num::NonZero;

/// Creates a new iterator that repeats a single element a given number of times.
///
/// The `repeat_n()` function repeats a single value exactly `n` times.
///
/// This is very similar to using [`repeat()`] with [`Iterator::take()`],
/// but there are two differences:
/// - `repeat_n()` can return the original value, rather than always cloning.
/// - `repeat_n()` produces an [`ExactSizeIterator`].
///
/// [`repeat()`]: crate::iter::repeat
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(iter_repeat_n)]
/// use std::iter;
///
/// // four of the number four:
/// let mut four_fours = iter::repeat_n(4, 4);
///
/// assert_eq!(Some(4), four_fours.next());
/// assert_eq!(Some(4), four_fours.next());
/// assert_eq!(Some(4), four_fours.next());
/// assert_eq!(Some(4), four_fours.next());
///
/// // no more fours
/// assert_eq!(None, four_fours.next());
/// ```
///
/// For non-`Copy` types,
///
/// ```
/// #![feature(iter_repeat_n)]
/// use std::iter;
///
/// let v: Vec<i32> = Vec::with_capacity(123);
/// let mut it = iter::repeat_n(v, 5);
///
/// for i in 0..4 {
///     // It starts by cloning things
///     let cloned = it.next().unwrap();
///     assert_eq!(cloned.len(), 0);
///     assert_eq!(cloned.capacity(), 0);
/// }
///
/// // ... but the last item is the original one
/// let last = it.next().unwrap();
/// assert_eq!(last.len(), 0);
/// assert_eq!(last.capacity(), 123);
///
/// // ... and now we're done
/// assert_eq!(None, it.next());
/// ```
#[inline]
#[unstable(feature = "iter_repeat_n", issue = "104434")]
pub fn repeat_n<T: Clone>(element: T, count: usize) -> RepeatN<T> {
    let mut element = ManuallyDrop::new(element);

    if count == 0 {
        // SAFETY: we definitely haven't dropped it yet, since we only just got
        // passed it in, and because the count is zero the instance we're about
        // to create won't drop it, so to avoid leaking we need to now.
        unsafe { ManuallyDrop::drop(&mut element) };
    }

    RepeatN { element, count }
}

/// An iterator that repeats an element an exact number of times.
///
/// This `struct` is created by the [`repeat_n()`] function.
/// See its documentation for more.
#[derive(Clone, Debug)]
#[unstable(feature = "iter_repeat_n", issue = "104434")]
pub struct RepeatN<A> {
    count: usize,
    // Invariant: has been dropped iff count == 0.
    element: ManuallyDrop<A>,
}

impl<A> RepeatN<A> {
    /// If we haven't already dropped the element, return it in an option.
    ///
    /// Clears the count so it won't be dropped again later.
    #[inline]
    fn take_element(&mut self) -> Option<A> {
        if self.count > 0 {
            self.count = 0;
            // SAFETY: We just set count to zero so it won't be dropped again,
            // and it used to be non-zero so it hasn't already been dropped.
            unsafe { Some(ManuallyDrop::take(&mut self.element)) }
        } else {
            None
        }
    }
}

#[unstable(feature = "iter_repeat_n", issue = "104434")]
impl<A> Drop for RepeatN<A> {
    fn drop(&mut self) {
        self.take_element();
    }
}

#[unstable(feature = "iter_repeat_n", issue = "104434")]
impl<A: Clone> Iterator for RepeatN<A> {
    type Item = A;

    #[inline]
    fn next(&mut self) -> Option<A> {
        if self.count == 0 {
            return None;
        }

        self.count -= 1;
        Some(if self.count == 0 {
            // SAFETY: the check above ensured that the count used to be non-zero,
            // so element hasn't been dropped yet, and we just lowered the count to
            // zero so it won't be dropped later, and thus it's okay to take it here.
            unsafe { ManuallyDrop::take(&mut self.element) }
        } else {
            A::clone(&self.element)
        })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }

    #[inline]
    fn advance_by(&mut self, skip: usize) -> Result<(), NonZero<usize>> {
        let len = self.count;

        if skip >= len {
            self.take_element();
        }

        if skip > len {
            // SAFETY: we just checked that the difference is positive
            Err(unsafe { NonZero::new_unchecked(skip - len) })
        } else {
            self.count = len - skip;
            Ok(())
        }
    }

    #[inline]
    fn last(mut self) -> Option<A> {
        self.take_element()
    }

    #[inline]
    fn count(self) -> usize {
        self.len()
    }
}

#[unstable(feature = "iter_repeat_n", issue = "104434")]
impl<A: Clone> ExactSizeIterator for RepeatN<A> {
    fn len(&self) -> usize {
        self.count
    }
}

#[unstable(feature = "iter_repeat_n", issue = "104434")]
impl<A: Clone> DoubleEndedIterator for RepeatN<A> {
    #[inline]
    fn next_back(&mut self) -> Option<A> {
        self.next()
    }

    #[inline]
    fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
        self.advance_by(n)
    }

    #[inline]
    fn nth_back(&mut self, n: usize) -> Option<A> {
        self.nth(n)
    }
}

#[unstable(feature = "iter_repeat_n", issue = "104434")]
impl<A: Clone> FusedIterator for RepeatN<A> {}

#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A: Clone> TrustedLen for RepeatN<A> {}